Exemplo n.º 1
0
def telemetry(sid, data):
    if data:
        # The current steering angle of the car
        steering_angle = data["steering_angle"]
        # The current throttle of the car
        throttle = data["throttle"]
        # The current speed of the car
        speed = data["speed"]
        # The current image from the center camera of the car
        imgString = data["image"]
        image = Image.open(BytesIO(base64.b64decode(imgString)))
        image_array = np.asarray(image)

        image_array = preprocess.crop(image_array, 0.35, 0.1)
        image_array = preprocess.resize(image_array, new_dimension=(64, 64))

        transformed_image_array = image_array[None, :, :, :]

        steering_angle = float(
            model.predict(transformed_image_array, batch_size=1))

        throttle = controller.update(float(speed))

        print(steering_angle, throttle)
        send_control(steering_angle, throttle)

        # save frame
        if args.image_folder != '':
            timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
            image_filename = os.path.join(args.image_folder, timestamp)
            image.save('{}.jpg'.format(image_filename))
    else:
        # NOTE: DON'T EDIT THIS.
        sio.emit('manual', data={}, skip_sid=True)
Exemplo n.º 2
0
def root():
    filepath, label, serial = next(im_gen)

    im = Image.open(filepath)

    assert im.format == "GIF", im.format
    assert im.n_frames == 16, im.n_frames

    N = 52
    w, h = im.size

    images = []

    M0_old = None
    M_mask = np.zeros((h, w), np.uint8)

    for ix in (3, 7, 11, 15):
        first = (M0_old is None)
        im.seek(ix)

        im_row = []

        M0 = np.array(im.convert("RGB"))
        im_row.append(M0)

        M0 = cv2.cvtColor(M0, cv2.COLOR_RGB2GRAY)

        if first:
            im_row.append(M0)
        else:
            Mdiff = cv2.subtract(M0_old, M0)
            im_row.append(0xff - Mdiff)

        if first:
            Mt = extract_c0(M0)
        else:
            Mt = extract_c123(M0, M0_old)

        M0_old = M0

        Mt_inv = 0xff - Mt
        Mt = 0xff - np.bitwise_and(Mt_inv, 0xff - M_mask)
        M_mask = np.bitwise_or(M_mask, Mt_inv)
        im_row.append(Mt)

        Mt = crop(Mt, first)
        im_row.append(Mt)

        images.append(im_row)

    im.close()

    ctx = {
        "images": images,
        "label": label,
        "serial": serial,
    }
    return render_template("label_server.html", **ctx)
Exemplo n.º 3
0
def generate_dataset(dataset_dir, crop_size, img_list, label_list):
    img_path = os.path.join(dataset_dir, 'img')
    label_path = os.path.join(dataset_dir, 'label')
    visualize_gt_path = os.path.join(dataset_dir, 'visualize_gt')

    if (not os.path.exists(img_path)):
        os.mkdir(img_path)
    if (not os.path.exists(label_path)):
        os.mkdir(label_path)
    if (not os.path.exists(visualize_gt_path)):
        os.mkdir(visualize_gt_path)
    for i in range(len(img_list)):
        crop(img_list[i],
             label_list[i],
             crop_size,
             crop_size,
             prefix='%d' % (i + 1),
             save_dir=dataset_dir,
             crop_label=True)
    generate_trainval_list(dataset_dir)
    write_train_list(dataset_dir)
def predict_captcha(im_data, model):
    fp = BytesIO(im_data)
    im = Image.open(fp)

    assert im.format == "GIF", im.format
    assert im.n_frames == 16, im.n_frames

    N = CAPTCHA_SIZE
    w, h = im.size

    Xlist = []
    ylist = []

    M0_list = []
    M0_last = None
    M_mask = np.zeros((h, w), dtype=np.uint8)
    M_merge = np.full((h, w), 0xff, dtype=np.uint8)

    for ix in (3, 7, 11, 15):
        im.seek(ix)
        M0 = np.array(im.convert('RGB'))
        M0 = cv2.cvtColor(M0, cv2.COLOR_RGB2GRAY)
        M0_list.append(M0)
        M_merge = np.min([M_merge, M0], axis=0)

    for cix, M0 in enumerate(M0_list):
        first = (M0_last is None)

        if first:
            Mt = extract_c0_v2(M0, M_merge)
        else:
            Mt = extract_c123(M0, M0_last)

        M0_last = M0

        Mt_inv = 0xff - Mt
        Mt = 0xff - np.bitwise_and(Mt_inv, 0xff - M_mask)
        M_mask = np.bitwise_or(M_mask, Mt_inv)

        Mt = crop(Mt, first)

        Xlist.append(Mt)

    im.close()
    fp.close()

    Xlist = np.array(Xlist, dtype=np.float32).reshape(-1, 1, N, N)
    ylist = model(torch.from_numpy(Xlist))

    code = ''.join(CAPTCHA_LABELS[ix] for ix in torch.argmax(ylist, dim=1))
    return code
Exemplo n.º 5
0
def test():
    """
        Train the model
        **input: **
            *dataset: (String) Dataset folder to used
            *ckpt: (String) [Optional] Path to the ckpt file to restore
    """
    ckpt = './outputs/checkpoints/SAR'
    validation_data_dir = './data/Test'
    img_width, img_height = 100, 100

    # Load name of id

    classname = [
        '2S1', 'BMP-2', 'BRDM-2', 'BTR-70', 'BTR-60', 'D7', 'T62', 'T72',
        'ZIL131', 'ZSU234'
    ]
    # Get Test dataset

    model = ModelSAR("SAR", output_folder=None)
    # Load the model
    model.load(ckpt)

    for i in range(1):
        test_datagen = ImageDataGenerator(rescale=1. / 255, rotation_range=0)
        validation_generator = test_datagen.flow_from_directory(
            validation_data_dir,
            target_size=(img_height, img_width),
            batch_size=2425,
            class_mode='sparse')
        filenames = validation_generator.class_indices
        print(filenames)
        X_test, y_test = validation_generator.next()
        X_test = crop(X_test)
        #X_test = blur(X_test, pow(10, 1 + i * 0.2))
        #X_test = oclusion(X_test, 0.06*(1 + i ))
        #X_test = noise(X_test,0.01*(i+1))
        # Evaluate all the dataset
        loss, acc, predicted_class = model.evaluate_dataset(
            np.expand_dims(X_test[:, :, :, 1], axis=3), y_test)
        print("Accuracy = ", acc)
        print("Loss = ", loss)

        # Get the confusion matrix
        cnf_matrix = confusion_matrix(y_test, predicted_class)
        # Plot the confusion matrix
        plt.figure(figsize=(5.2, 5))
        plot_confusion_matrix(cnf_matrix,
                              classes=classname,
                              title='Confusion matrix, without normalization')
        plt.show()
Exemplo n.º 6
0
def telemetry(sid, data):
    # The current steering angle of the car
    steering_angle = data["steering_angle"]

    # The current throttle of the car
    throttle = data["throttle"]

    # The current speed of the car
    speed = data["speed"]

    # The current image from the center camera of the car
    imgString = data["image"]
    image = Image.open(BytesIO(base64.b64decode(imgString)))
    image_array = np.asarray(image)

    image_array = preprocess.crop(image_array, 0.35, 0.1)
    image_array = preprocess.resize(image_array, new_dim=(64, 64))

    transformed_image_array = image_array[None, :, :, :]

    # This model currently assumes that the features of the model are just the images. Feel free to change this.

    steering_angle = float(model.predict(transformed_image_array,
                                         batch_size=1))
    # The driving model currently just outputs a constant throttle. Feel free to edit this.
    #throttle = 0.3
    throttle = 0.2
    if float(speed) < 10 and float(speed) > 5:
        throttle = 0.5

    print('{:.5f}, {:.1f}'.format(steering_angle, throttle))

    send_control(steering_angle, throttle)

    # save frame
    if args.image_folder != '':
        timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
        image_filename = os.path.join(args.image_folder, timestamp)
        image.save('{}.jpg'.format(image_filename))
Exemplo n.º 7
0
    def __init__(self, T1_path, IR_path, T2_path, is_transform, is_crop,
                 is_hist, forest):
        self.T1_path = T1_path
        self.IR_path = IR_path
        self.T2_path = T2_path
        self.is_transform = is_transform
        self.is_crop = is_crop
        self.is_hist = is_hist
        self.forest = forest
        self.n_classes = 11
        self.T1mean = 0.0
        self.IRmean = 0.0
        self.T2mean = 0.0
        #read data
        T1_nii = to_uint8(readVol(self.T1_path))
        IR_nii = IR_to_uint8(readVol(self.IR_path))
        T2_nii = to_uint8(readVol(self.T2_path))
        #histeq
        if self.is_hist:
            T1_nii = histeq(T1_nii)
        #stack
        T1_stack_list = get_stacked(T1_nii, self.forest)
        IR_stack_list = get_stacked(IR_nii, self.forest)
        T2_stack_list = get_stacked(T2_nii, self.forest)
        #crop
        if self.is_crop:
            region_list = calc_max_region_list(
                calc_crop_region(T1_stack_list, 50, 5), self.forest)
            self.region_list = region_list
            T1_stack_list = crop(T1_stack_list, region_list)
            IR_stack_list = crop(IR_stack_list, region_list)
            T2_stack_list = crop(T2_stack_list, region_list)
        #get mean
        '''
        T1mean,IRmean,T2mean=0.0,0.0,0.0
        for samples in T1_stack_list:
            for stacks in samples:
                T1mean=T1mean+np.mean(stacks)
        self.T1mean=T1mean/(len(T1_stack_list)*len(T1_stack_list[0]))
        for samples in IR_stack_list:
            for stacks in samples:
                IRmean=IRmean+np.mean(stacks)
        self.IRmean=IRmean/(len(IR_stack_list)*len(IR_stack_list[0]))
        for samples in T2_stack_list:
            for stacks in samples:
                T2mean=T2mean+np.mean(stacks)
        self.T2mean=T2mean/(len(T2_stack_list)*len(T2_stack_list[0]))
        '''
        self.T1mean = 94.661544495
        self.IRmean = 88.574705283
        self.T2mean = 32.376038631

        #transform
        if self.is_transform:
            for stack_index in range(len(T1_stack_list)):
                T1_stack_list[stack_index],  \
                IR_stack_list[stack_index],  \
                T2_stack_list[stack_index]=  \
                self.transform(              \
                T1_stack_list[stack_index],  \
                IR_stack_list[stack_index],  \
                T2_stack_list[stack_index])

        # data ready
        self.T1_stack_list = T1_stack_list
        self.IR_stack_list = IR_stack_list
        self.T2_stack_list = T2_stack_list
Exemplo n.º 8
0
def train():
    """
        Train the model
        **input: **
            *dataset: (String) Dataset folder to used
            *ckpt: (String) [Optional] Path to the ckpt file to restore
            *output: (String) [Optional] Path to the output folder to used. ./outputs/ by default
    """
    ckpt = './outputs/checkpoints/SAR'
    output_folder = None

    train_data_dir = './data/Train'
    validation_data_dir = './data/Train'
    img_width, img_height = 100, 100
    NB_LABELS = 10
    nb_train_samples = 2747
    batch_size = 16
    lr = 0.0002

    train_datagen = ImageDataGenerator(rescale=1. / 255)
    valid_datagen = ImageDataGenerator(rescale=1. / 255)

    train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(img_height, img_width),
        batch_size=batch_size,
        class_mode='sparse',
        shuffle=True)

    valid_generator = valid_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(img_height, img_width),
        batch_size=nb_train_samples,
        class_mode='sparse',
        shuffle=True)

    # Init model
    model = ModelSAR("SAR", output_folder, NB_LABELS)
    if ckpt is not None:
        model.init()
    else:
        model.load(ckpt)

    # Training pipeline
    for batch_id in range(40000):
        x_batch, y_batch = train_generator.next()
        x_batch = random_crop(x_batch)

        ### Training
        cost, acc = model.optimize(np.expand_dims(x_batch[:, :, :, 1], axis=3),
                                   y_batch, lr)
        print("Batch ID = %s, loss = %s, acc = %s" % (batch_id, cost, acc))

        ### Validation
        if batch_id % 20 == 0:  # Plot the last results
            X_valid, y_valid = valid_generator.next()
            X_valid = crop(X_valid)
            print("Evaluate full validation dataset ...")
            loss, acc, _ = model.evaluate_dataset(
                np.expand_dims(X_valid[:, :, :, 1], axis=3), y_valid)
            print("Current loss: %s Current acc: %s" % (loss, acc))
            model.save()