Exemplo n.º 1
0
    def train(self):
        """ train 10-class MNIST classifier """

        # load data
        tr_img, tr_lab = read_tfrecord(self.args.datadir, self.args.batch, self.args.epoch)
        val_img, val_lab = read_tfrecord(self.args.val_datadir, self.args.batch, self.args.epoch)

        # graph
        tr_logit = self.build(tr_img)
        val_logit = self.build(val_img, True)

        step = tf.Variable(0, trainable=False)
        increment_step = tf.assign_add(step, 1)

        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=tr_lab, logits=tr_logit))
        optimizer = tf.train.AdamOptimizer(self.args.lr).minimize(loss, global_step=step)

        tr_accuracy = self.accuracy(tr_lab, tr_logit)
        val_accuracy = self.accuracy(val_lab, val_logit)

        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) + tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES)
        saver = tf.train.Saver(max_to_keep=2, var_list=var_list)
        # session
        with tf.Session() as sess:
            if self.args.restore:
                saver.restore(sess, tf.train.latest_checkpoint(self.args.ckptdir))
            else:
                sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            try:
                min_val_acc = 10000.
                while not coord.should_stop():
                    global_step = sess.run(step)
                    batch_loss, batch_acc, _ = sess.run([loss, tr_accuracy, optimizer])
                    if global_step % 100 == 0:
                        print('step:: %d, loss= %.3f, accuracy= %.3f' % (global_step, batch_loss, batch_acc))
                    if global_step % 3000 == 0:
                        val_acc = sess.run(val_accuracy)
                        print('val accuracy= %.3f' % val_acc)
                        if val_acc < min_val_acc:
                            min_val_acc = val_acc
                            save_path = saver.save(sess, self.args.ckptdir + '/model_%.3f.ckpt' % val_acc,
                                                   global_step=step)
                            print('model saved in file: %s' % save_path)

                    sess.run(increment_step)

            except KeyboardInterrupt:
                print('keyboard interrupted')
                coord.request_stop()
            except Exception as e:
                coord.request_stop(e)
            finally:
                save_path = saver.save(sess, self.args.ckptdir + '/model.ckpt', global_step=step)
                print('model saved in file : %s' % save_path)
                coord.request_stop()
                coord.join(threads)
Exemplo n.º 2
0
    def test(self):
        # load data
        ts_img, ts_lab = read_tfrecord(self.args.datadir, self.args.batch, None)

        # graph
        ts_logit = self.build(ts_img)

        step = tf.Variable(0, trainable=False)

        ts_accuracy = self.accuracy(ts_lab, ts_logit)

        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) + tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES)
        saver = tf.train.Saver(var_list=var_list)

        # session
        with tf.Session() as sess:
            saver.restore(sess, tf.train.latest_checkpoint(self.args.ckptdir))
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            total_acc = 0.
            steps = 0
            while steps < 10000 / self.args.batch:
                batch_acc = sess.run(ts_accuracy)
                total_acc += batch_acc
                steps += 1

            total_acc /= steps
            print('number: %d, total acc: %.1f' % (steps, total_acc * 100) + '%')

            coord.request_stop()
            coord.join(threads)