def format_data(data_source):

    adj, features, labels = load_data(data_source)

    # Store original adjacency matrix (without diagonal entries) for later
    # adj_orig = adj
    # adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    # adj_orig.eliminate_zeros()
    # adj = adj_orig

    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    # Some preprocessing
    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    adj_label = adj + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    items = [
        adj, num_features, num_nodes, features_nonzero, adj_norm, adj_label,
        features, labels
    ]
    feas = {}
    for item in items:
        # item_name = [ k for k,v in locals().iteritems() if v == item][0]]
        item_name = retrieve_name(item)
        feas[item_name] = item

    return feas
Exemplo n.º 2
0
def format_data(data_source):

    adj, features, labels = load_data2(data_source)

    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    adj_label = adj + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    items = [
        adj, num_features, num_nodes, features_nonzero, adj_norm, adj_label,
        features, labels
    ]
    feas = {}
    for item in items:
        # item_name = [ k for k,v in locals().iteritems() if v == item][0]]
        item_name = retrieve_name(item)
        feas[item_name] = item

    return feas
Exemplo n.º 3
0
def format_data_new(adj, features):
    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    # Some preprocessing
    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    adj_label = adj + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    values = [
        adj, num_features, num_nodes, features_nonzero, pos_weight, norm,
        adj_norm, adj_label, features, adj_orig
    ]
    keys = [
        'adj', 'num_features', 'num_nodes', 'features_nonzero', 'pos_weight',
        'norm', 'adj_norm', 'adj_label', 'features', 'adj_orig'
    ]
    feas = {}
    feas = dict(zip(keys, values))

    return feas
Exemplo n.º 4
0
def format_data(data_name):
    # Load data

    adj, features, y_test, tx, ty, test_maks, true_labels = load_data(
        data_name)

    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj
    #删除对角线元素
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
        adj)
    adj = adj_train
    adj_dense = adj.toarray()

    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    # Some preprocessing
    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]
    features_dense = features.tocoo().toarray()

    features = sparse_to_tuple(features.tocoo())
    #num_features是feature的维度
    num_features = features[2][1]
    #features_nonzero就是非零feature的个数
    features_nonzero = features[1].shape[0]

    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    adj_label = adj_train + sp.eye(adj_train.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    items = [
        adj, num_features, num_nodes, features_nonzero, pos_weight, norm,
        adj_norm, adj_label, features, true_labels, train_edges, val_edges,
        val_edges_false, test_edges, test_edges_false, adj_orig,
        features_dense, adj_dense, features_dense
    ]
    feas = {}

    print('num_features is:', num_features)
    print('num_nodes is:', num_nodes)
    print('features_nonzero is:', features_nonzero)
    print('pos_weight is:', pos_weight)
    print('norm is:', norm)

    for item in items:
        #item_name = [ k for k,v in locals().iteritems() if v == item][0]
        feas[retrieve_name(item)] = item

    return feas
Exemplo n.º 5
0
def format_data(data_name):
    # Load data

    adj, features, true_labels = load_data(data_name)

    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
        adj)
    adj = adj_train

    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    # Some preprocessing
    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    adj_label = adj_train + 2 * sp.eye(adj_train.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    feas = {}
    feas['adj'] = adj
    feas['num_features'] = num_features
    feas['num_nodes'] = num_nodes
    feas['features_nonzero'] = features_nonzero
    feas['pos_weight'] = pos_weight
    feas['norm'] = norm
    feas['adj_norm'] = adj_norm
    feas['adj_label'] = adj_label
    feas['features'] = features
    feas['true_labels'] = true_labels
    feas['train_edges'] = train_edges
    feas['val_edges'] = val_edges
    feas['val_edges_false'] = val_edges_false
    feas['test_edges'] = test_edges
    feas['test_edges_false'] = test_edges_false
    feas['adj_orig'] = adj_orig

    return feas
Exemplo n.º 6
0
def mask_edges_prd(adjs_list):
    pos_edges_l, false_edges_l = [], []
    edges_list = []
    for i in range(0, len(adjs_list)):
        # Function to build test set with 10% positive links
        # NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.

        adj = adjs_list[i]
        # Remove diagonal elements
        adj = adj - sp.dia_matrix(
            (adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape)
        adj.eliminate_zeros()
        # Check that diag is zero:
        assert np.diag(adj.todense()).sum() == 0

        adj_triu = sp.triu(adj)
        adj_tuple = sparse_to_tuple(adj_triu)
        edges = adj_tuple[0]
        edges_all = sparse_to_tuple(adj)[0]
        num_false = int(edges.shape[0])

        pos_edges_l.append(edges)

        def ismember(a, b, tol=5):
            rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
            return np.any(rows_close)

        edges_false = []
        while len(edges_false) < num_false:
            idx_i = np.random.randint(0, adj.shape[0])
            idx_j = np.random.randint(0, adj.shape[0])
            if idx_i == idx_j:
                continue
            if ismember([idx_i, idx_j], edges_all):
                continue
            if edges_false:
                if ismember([idx_j, idx_i], np.array(edges_false)):
                    continue
                if ismember([idx_i, idx_j], np.array(edges_false)):
                    continue
            edges_false.append([idx_i, idx_j])

        assert ~ismember(edges_false, edges_all)

        false_edges_l.append(edges_false)

    # NOTE: these edge lists only contain single direction of edge!
    return pos_edges_l, false_edges_l
Exemplo n.º 7
0
def test_one_graph(adj, adj_orig, features_csr, num_node, k_num, model,
                   placeholders, sess, feed_dict):
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]),
        shape=adj_orig.shape)  # delete self loop
    adj_orig.eliminate_zeros()
    adj_new = adj
    features = sparse_to_tuple(features_csr.tocoo())
    adj_label = adj_new + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    adj_clean = adj_orig.tocsr()
    k_num = int(k_num * size / noise_ratio)  # match the budget size
    if k_num != 0:
        adj_norm, adj_norm_sparse = preprocess_graph(adj_new)
        feed_dict.update({placeholders["adj"]: adj_norm})
        feed_dict.update({placeholders["adj_orig"]: adj_label})
        feed_dict.update({placeholders["features"]: features})
        feed_dict.update({placeholders['dropout']: FLAGS.dropout})
        model.k = k_num
        x_tilde = sess.run(model.realD_tilde,
                           feed_dict=feed_dict,
                           options=run_options)
        noised_indexes, clean_indexes = get_noised_indexes(
            x_tilde, adj_new, num_node)
        feed_dict.update({placeholders["noised_mask"]: noised_indexes})
        feed_dict.update({placeholders["clean_mask"]: clean_indexes})
        feed_dict.update({placeholders["noised_num"]: len(noised_indexes) / 2})
        test1 = model.test_new_indexes.eval(session=sess, feed_dict=feed_dict)
        test0 = model.test_noised_index.eval(session=sess, feed_dict=feed_dict)
        new_adj = get_new_adj(feed_dict, sess, model, noised_indexes, adj_new,
                              k_num, num_node)
    else:
        # new_adj = adj
        new_adj = adj.copy()
    new_adj_sparse = sp.csr_matrix(new_adj)

    psnr = PSNR(adj_clean[:num_node, :num_node],
                new_adj_sparse[:num_node, :num_node])
    wls = WL_no_label(adj_clean[:num_node, :num_node],
                      new_adj_sparse[:num_node, :num_node])
    return psnr, wls
Exemplo n.º 8
0
def test(saver, adj, features, meta_dir, checkpoints_dir):
    adj_norm, adj_norm_sparse = preprocess_graph(adj)
    placeholders = {
        'features': tf.sparse_placeholder(tf.float32),
        'adj': tf.sparse_placeholder(tf.float32),
        'adj_orig': tf.sparse_placeholder(tf.float32),
        'dropout': tf.placeholder_with_default(0., shape=())
    }

    num_nodes = adj.shape[0]
    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]
    feed_dict = construct_feed_dict(adj_norm, adj_label, features,
                                    placeholders)
    feed_dict.update({placeholders['dropout']: FLAGS.dropout})
    # Create model
    saver = tf.train.Saver(max_to_keep=10)
    model = None
    if model_str == "gae_gan":
        model = gaegan(placeholders, num_features, num_nodes, features_nonzero)
    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
    global_steps = tf.get_variable(0, name="globals")
    opt = 0
    # Optimizer
    with tf.name_scope('optimizer'):
        if model_str == 'gae_gan':
            opt = Optimizergaegan(preds=model.x_tilde,
                                  labels=tf.reshape(
                                      tf.sparse_tensor_to_dense(
                                          placeholders['adj_orig'],
                                          validate_indices=False), [-1]),
                                  model=model,
                                  num_nodes=num_nodes,
                                  pos_weight=pos_weight,
                                  norm=norm,
                                  global_step=global_steps)

        # session part
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    cost_val = []
    acc_val = []
    # load network
    with tf.Session() as sess:
        saver = tf.train.import_meta_graph(meta_dir)
        saver.restore(sess, tf.train.latest_checkpoint(checkpoints_dir))
        sess.run()
        new_adj = get_new_adj(feed_dict)
    return new_adj
Exemplo n.º 9
0
def format_data(data_source):

    adj, features, labels = load_data2(data_source)
    #print(adj.shape,'1111111111')
    #print(features.shape,'2222222')
    #print(features,'XXXXXSSSSSSSSSSSSS')
    #print(labels.shape,'33333333333')
    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    adj_norm = preprocess_graph(adj)
    #print(adj_norm,'0000000000000')

    num_nodes = adj.shape[0]
    #print(num_nodes,'444444444')

    features = sparse_to_tuple(features.tocoo())
    #print(features,'NNNNNNNNNNNNNNNNN')
    #print(features[0].shape,'66666666666')
    #print(features[1].shape, '66666666666@@@')
    #print(features[2], '66666666666###')
    num_features = features[2][1]
    #print(num_features,'7777777777777')
    features_nonzero = features[1].shape[0]
    #print(features_nonzero,'8888888888888')

    adj_label = adj + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    #print(adj_label,'AAAAAAAAAAAAAAAAAAAA')
    items = [
        adj, num_features, num_nodes, features_nonzero, adj_norm, adj_label,
        features, labels
    ]
    feas = {}
    for item in items:
        # item_name = [ k for k,v in locals().iteritems() if v == item][0]]
        item_name = retrieve_name(item)
        feas[item_name] = item

    return feas
Exemplo n.º 10
0
def get_data(all_coor_dict, feat_shape, adj_all_dict):
    '''
    ----------
    Parameters
    ----------
    all_coor_dict : dict
        {"1.jpg":[coordinates], "2.jpg":[coordinates], ...}
    feat_shape : tuple
        feat_shape = (args.n_point, args.num_node_features).
    adj_all_dict : dict
        {"1.jpg":[reorder_adj(csr_matrix)], "2.jpg":[coordinates], ...}
    ----------
    Returns
    ----------
    data_list : list
        [Data(adj=[10, 10], adj_label=[10, 10], edge_index=[2, 21], img_name=00001241.jpg, norm=0.6329113924050633, weight_tensor=[100], x=[10, 2], y=[1]),
         Data(adj=[10, 10], ...) 
         ...]
    data_images : dict
        {"1.jpg": Data(adj=[10, 10], adj_label=[10, 10], edge_index=[2, 21], img_name=00001241.jpg, norm=0.6329113924050633, weight_tensor=[100], x=[10, 2], y=[1]),
         "2.jpg": ..., 
         ...]

    '''
    data_list = []
    data_images = {}
    for key, value in all_coor_dict.items():

        features = rd.get_features(feat_shape, key, all_coor_dict)
        features = sparse_to_tuple(features.tocoo())
        features = torch.sparse.FloatTensor(torch.LongTensor(features[0].T),
                                            torch.FloatTensor(features[1]),
                                            torch.Size(features[2])).to(dev)

        edge_index = torch.tensor(rd.adj2connection(adj_all_dict[key]),
                                  dtype=torch.long)

        adj = adj_all_dict[key]
        adj_norm, adj_label, norm, weight_tensor = rd.data_process(adj)

        data = Data(x=features,
                    edge_index=edge_index.t().contiguous(),
                    norm=norm,
                    y=label,
                    adj=adj_norm,
                    img_name=key,
                    weight_tensor=weight_tensor,
                    adj_label=adj_label)
        data_list.append(data)
        data_images[key] = data
    return data_list, data_images
Exemplo n.º 11
0
def format_data(data_source):

    #    adj = load_adj('../data/facebook/0')
    #    features = load_attr('../data/facebook/0')
    #    labels = np.ones(adj.shape[0])
    #    adj, features, labels = load_data2(data_source)
    adj, features, labels = load_data('twitter')
    #    print(adj)
    print(type(adj), type(features))
    print(adj.shape, features.shape)
    features = normalize(features, norm='l1', axis=1)
    print(features[:5])
    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    adj_norm = preprocess_graph(adj)

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    adj_label = adj + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    items = [
        adj, num_features, num_nodes, features_nonzero, adj_norm, adj_label,
        features, labels
    ]
    feas = {}
    for item in items:
        # item_name = [ k for k,v in locals().iteritems() if v == item][0]]
        item_name = retrieve_name(item)
        feas[item_name] = item

    return feas
Exemplo n.º 12
0
def preprocess_graph(adj):
    '''
    normalize adj
    '''
    adj = sp.coo_matrix(adj)  #确保adj为csr_matrix
    #在计算新特征时没有考虑自己的特征,这肯定是个重大缺陷,so在adj上给对角线元素全部加1
    adj_ = adj + sp.eye(adj.shape[0])  #在adj上给对角线元素全部加1
    rowsum = np.array(adj_.sum(1))  #按照行来计算和
    #np.power(rowsum, -0.5).flatten():将rowsum的元素进行开方后,拉平一行
    #sp.diags https://www.cnblogs.com/SupremeBoy/p/12952735.html
    # degree_mat_inv_sqrt的结果是把()算好的值填写到10×10的主对角线上去。其余位置补0
    degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
    #.tocoo():Convert this matrix to COOrdinate format
    #normalize adj: 采用加法规则进行聚合,对于度大的节点特征越来越大,而对于度小的节点却相反,这可能导致网络训练过程中梯度爆炸或者消失的问题。
    adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(
        degree_mat_inv_sqrt).tocoo()
    return sparse_to_tuple(adj_normalized)
Exemplo n.º 13
0
 def preprocess_graph(self, adj):
     adj = sp.coo_matrix(adj)
     if adj.shape[0] == adj.shape[1]:
         adj_ = adj + sp.eye(adj.shape[0])
         rowsum = np.array(adj_.sum(1))
         degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
         adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(
             degree_mat_inv_sqrt).tocoo()
     else:
         rowsum = np.array(adj.sum(1)) + 0.0001
         colsum = np.array(adj.sum(0)) + 0.0001
         rowdegree_mat_inv = sp.diags(
             np.nan_to_num(np.power(rowsum, -0.5)).flatten())
         coldegree_mat_inv = sp.diags(
             np.nan_to_num(np.power(colsum, -0.5)).flatten())
         adj_normalized = rowdegree_mat_inv.dot(adj).dot(
             coldegree_mat_inv).tocoo()
     return preprocessing.sparse_to_tuple(adj_normalized)
Exemplo n.º 14
0
def load_model(placeholders, model, opt, adj_train, test_edges, test_edges_false, features, sess, name="single_fold"):

        adj = adj_train
        # This will be calculated for every fold
        # pos_weight and norm should be tensors
        print ('----------------')
        pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() # N/P
        norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # (N+P) x (N+P) / (N)

        adj_label = adj_train + sp.eye(adj_train.shape[0])
        adj_label = sparse_to_tuple(adj_label)

        # Some preprocessing. adj_norm is D^(-1/2) x adj x D^(-1/2)
        adj_norm = preprocess_graph(adj)
    
        # Construct feed dictionary
        feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders)
        feed_dict.update({placeholders['dropout']: FLAGS.dropout})
        feed_dict.update({placeholders['is_training']: True})
        feed_dict.update({placeholders['norm']: norm})
        feed_dict.update({placeholders['pos_weight']: pos_weight})

        # Some preprocessing. adj_norm is D^(-1/2) x adj x D^(-1/2)
        adj_norm = preprocess_graph(adj)
        saver = tf.train.Saver()
        
        saver.restore(sess=sess, save_path=(save_dir+name))
        print ('Model restored')

        # Decrease MC samples for pubmed 
        if (dataset_str == 'pubmed'): 
                S = 5
        else:
                S = 15
        
        adj_score, z_activated = get_score_matrix(sess, placeholders, feed_dict, model, S=S, save_qual=True)

        return adj_score, z_activated
Exemplo n.º 15
0
def data_process(adj):

    adj_norm = preprocess_graph(adj)

    adj_train = adj
    # Create Model
    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    adj_label = adj_train + sp.eye(adj_train.shape[0])
    adj_label = sparse_to_tuple(adj_label)

    adj_norm = torch.sparse.FloatTensor(torch.LongTensor(adj_norm[0].T),
                                        torch.FloatTensor(adj_norm[1]),
                                        torch.Size(adj_norm[2])).to(dev)
    adj_label = torch.sparse.FloatTensor(torch.LongTensor(adj_label[0].T),
                                         torch.FloatTensor(adj_label[1]),
                                         torch.Size(adj_label[2])).to(dev)

    weight_mask = adj_label.to_dense().view(-1) == 1
    weight_tensor = torch.ones(weight_mask.size(0)).to(dev)
    weight_tensor[weight_mask] = pos_weight
    return adj_norm, adj_label, norm, weight_tensor
Exemplo n.º 16
0
def train():
    ## add noise label
    train_adj_list, train_adj_orig_list, train_k_list = add_noises_on_adjs(
        train_structure_input, train_num_nodes_all)
    test_adj_list, test_adj_orig_list, test_k_list = add_noises_on_adjs(
        test_structure_input, test_num_nodes_all)

    adj = train_adj_list[0]
    features_csr = train_feature_input[0]
    features = sparse_to_tuple(features_csr.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]
    adj_orig = train_adj_orig_list[0]
    adj_label = train_adj_list[0] + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    num_nodes = adj.shape[0]

    adj_norm, adj_norm_sparse = preprocess_graph(adj)

    ############
    global_steps = tf.get_variable('global_step',
                                   trainable=False,
                                   initializer=0)
    new_learning_rate_dis = tf.train.exponential_decay(
        FLAGS.learn_rate_init,
        global_step=global_steps,
        decay_steps=100,
        decay_rate=0.95)
    new_learning_rate_gen = tf.train.exponential_decay(
        FLAGS.learn_rate_init_gen,
        global_step=global_steps,
        decay_steps=100,
        decay_rate=0.95)
    new_learn_rate_value = FLAGS.learn_rate_init
    # set the placeholders
    placeholders = {
        'features': tf.sparse_placeholder(tf.float32, name="ph_features"),
        'adj': tf.sparse_placeholder(tf.float32, name="ph_adj"),
        'adj_orig': tf.sparse_placeholder(tf.float32, name="ph_orig"),
        'dropout': tf.placeholder_with_default(0.3,
                                               shape=(),
                                               name="ph_dropout"),
        'clean_mask': tf.placeholder(tf.int32),
        'noised_mask': tf.placeholder(tf.int32),
        'noised_num': tf.placeholder(tf.int32),
        'node_mask': tf.placeholder(tf.float32)
    }
    # build models
    model = None
    adj_clean = adj_orig.tocoo()
    adj_clean_tensor = tf.SparseTensor(indices=np.stack(
        [adj_clean.row, adj_clean.col], axis=-1),
                                       values=adj_clean.data,
                                       dense_shape=adj_clean.shape)
    if model_str == "mask_gvae":
        model = mask_gvae(placeholders,
                          num_features,
                          num_nodes,
                          features_nonzero,
                          new_learning_rate_dis,
                          new_learning_rate_gen,
                          adj_clean=adj_clean_tensor,
                          k=int(adj.sum() * noise_ratio))
        model.build_model()
    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
    opt = 0
    # Optimizer
    with tf.name_scope('optimizer'):
        if model_str == 'mask_gvae':
            opt = Optimizer(preds=tf.reshape(model.x_tilde, [-1]),
                            labels=tf.reshape(
                                tf.sparse_tensor_to_dense(
                                    placeholders['adj_orig'],
                                    validate_indices=False), [-1]),
                            model=model,
                            num_nodes=num_nodes,
                            global_step=global_steps,
                            new_learning_rate=new_learning_rate_dis,
                            new_learning_rate_gen=new_learning_rate_gen,
                            placeholders=placeholders)
    # init the session
    sess = tf.Session()
    # sess.run(tf.global_variables_initializer()) # initial test
    # initial clean and noised_mask
    clean_mask = np.array([1, 2, 3, 4, 5])
    noised_mask = np.array([6, 7, 8, 9, 10])
    noised_num = noised_mask.shape[0] / 2
    # ##################################
    feed_dict = construct_feed_dict(adj_norm, adj_label, features, clean_mask,
                                    noised_mask, noised_num, placeholders)
    node_mask = np.ones([num_nodes, n_class])
    node_mask[train_num_nodes_all[0]:, :] = 0
    feed_dict.update({placeholders['node_mask']: node_mask})
    feed_dict.update({placeholders['dropout']: FLAGS.dropout})
    # ##################################

    if if_train:
        sess.run(tf.global_variables_initializer())  # initial test
        for epoch in range(FLAGS.epochs):
            for i in tqdm(range(len(train_feature_input))):
                train_one_graph(train_adj_list[i], train_adj_orig_list[i],
                                train_feature_input[i], train_num_nodes_all[i],
                                train_k_list[i], model, opt, placeholders,
                                sess, new_learning_rate_gen, feed_dict, epoch,
                                i)
        saver = tf.train.Saver()  # define saver in the loop
        saver.save(sess, "./checkpoints/{}.ckpt".format(dataset_str))
        print("Optimization Finished!")
        psnr_list = []
        wls_list = []
        for i in range(len(test_feature_input)):
            psnr, wls = test_one_graph(test_adj_list[i], test_adj_orig_list[i],
                                       test_feature_input[i],
                                       test_num_nodes_all[i], test_k_list[i],
                                       model, placeholders, sess, feed_dict)
            psnr_list.append(psnr)
            wls_list.append(wls)
        print(psnr_list)
    else:
        saver = tf.train.Saver()  # define saver in the loop
        saver.restore(sess, "./checkpoints/{}.ckpt".format(dataset_str))
        psnr_list = []
        wls_list = []
        for i in range(len(test_feature_input)):
            psnr, wls = test_one_graph(test_adj_list[i], test_adj_orig_list[i],
                                       test_feature_input[i],
                                       test_num_nodes_all[i], test_k_list[i],
                                       model, placeholders, sess, feed_dict)
            psnr_list.append(psnr)
            wls_list.append(wls)
        print(psnr_list)
    ##################################
    ################## the PSRN and WL #########################
    print("#" * 15)
    print("The PSNR is:")
    print(np.mean(psnr_list))
    print("The WL is :")
    print(np.mean(wls_list))
    return np.mean(psnr_list), np.mean(wls_list)
Exemplo n.º 17
0
import os
EGO_USER = 100466178325794757407  # which ego network to look at

# Load pickled (adj, feat) tuple
network_dir = './g-processed/{0}-adj-feat.pkl'.format(EGO_USER)
with open(network_dir, 'rb') as f:
    adj, features = pickle.load(f, encoding='iso-8859-1')
g = nx.Graph(adj)
nx.draw_networkx(g, with_labels=False, node_size=50, node_color='r')
plt.show()

# Train on CPU (hide GPU) due to memory constraints
os.environ['CUDA_VISIBLE_DEVICES'] = ""

x = sp.lil_matrix(features)
features_tuple = sparse_to_tuple(x)
features_shape = features_tuple[2]
# Get graph attributes (to feed into model)
num_nodes = adj.shape[0]  # number of nodes in adjacency matrix
num_features = features_shape[
    1]  # number of features (columsn of features matrix)
features_nonzero = features_tuple[1].shape[
    0]  # number of non-zero entries in features matrix (or length of values list)
# Store original adjacency matrix (without diagonal entries) for later
adj_orig = adj
adj_orig = adj_orig - sp.dia_matrix(
    (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
adj_orig.eliminate_zeros()
np.random.seed(0)  # IMPORTANT: guarantees consistent train/test splits
adj_train, train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
    adj, test_frac=.3, val_frac=.1)
Exemplo n.º 18
0
    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
        adj, test_percent=10., val_percent=5.)
    adj = adj_train  # This is the adj matrix that masked out all validation and testing entries.
    #print(adj_train.shape)
    #import pdb;pdb.set_trace()

    if FLAGS.features == 0:
        features = sp.identity(
            features.shape[0])  # featureless. sparse coo_matrix.

    # Some preprocessing
    #adj_norm = preprocess_graph(adj)

    attn_adj_norm = adj + sp.eye(adj.shape[0])
    attn_adj_norm = sparse_to_tuple(attn_adj_norm)  # a tuple

    adj_norm = preprocess_graph(
        adj)  # a tuple. Normalization. Identical matrix is added here.

    #print(type(adj + sp.eye(adj.shape[0])))
    #import pdb;pdb.set_trace()

    # Define placeholders
    placeholders = {  # this is passed directly to the model to build the graph.
        'features': tf.sparse_placeholder(tf.float32),
        'adj': tf.sparse_placeholder(tf.float32),
        'adj_orig': tf.sparse_placeholder(tf.float32),
        'in_drop': tf.placeholder_with_default(0., shape=()),
        'attn_drop': tf.placeholder_with_default(0., shape=()),
        'feat_drop': tf.placeholder_with_default(0., shape=())
Exemplo n.º 19
0
def run(seed, gamma, beta, hidden, lr, NB_EPOCH=300):
    """
    Main function. Run the architecture for the initialization defined by seed and by the hyperparameters gamma, beta, hidden, lr
    Inputs:
        seed : seed to defined the initialization of the training/testing/validation split,
        gamma, beta, hidden, lr: hyperparameters of the architecture
        NB_EPOCH: number of runs to do of the same architecture with different weight initializations. Default: 1000
    Outputs:
        auc_test, auc_train, auc_val: AUC on the test, train and validation sets
    """
    tf.reset_default_graph()
    training_set_mask, testing_set_mask, idx_training, idx_testing = preprocessing_dataset.split_train_test(
        0.8, M_str, seed, labels)
    #create a training and test mask on the data
    Otraining = preprocessing_dataset.load_mask(training_set_mask, M_str,
                                                nrRows, nrCols)
    Otest = preprocessing_dataset.load_mask(testing_set_mask, M_str, nrRows,
                                            nrCols)

    new_labels_train = np.copy(labels)
    new_labels_train[idx_testing] = -1
    #split train set into 4 parts to create a validation set
    training_set_mask, validation_set_mask, idx_training, idx_validation = preprocessing_dataset.split_train_validation_4(
        3, M_str, seed, new_labels_train)
    Otraining = preprocessing_dataset.load_mask(training_set_mask, M_str,
                                                nrRows, nrCols)
    Ovalidation = preprocessing_dataset.load_mask(validation_set_mask, M_str,
                                                  nrRows, nrCols)

    Otraining = np.concatenate((Otraining, training_set_mask), axis=1)
    Ocol = np.zeros((Otest.shape[0], 1))
    Otest_support = np.concatenate((Otest, Ocol), axis=1)
    Ovalidation_support = np.concatenate((Ovalidation, Ocol), axis=1)
    Osupport_t = Otraining + Otest_support + Ovalidation_support
    Ovalidation = np.concatenate((Ovalidation, validation_set_mask), axis=1)
    Otest = np.concatenate((Otest, testing_set_mask), axis=1)

    u_features, v_features, train_labels, train_u_indices, train_v_indices, val_labels, val_u_indices, val_v_indices, test_labels, test_u_indices, test_v_indices = load_data_monti_tadpole(
        M, Otraining, Otest, Ovalidation)

    m, n = M.shape

    # global normalization
    support = []
    support_t = []

    path_support_women = "women_synth_noteasy.csv"
    women_support, _, _ = read_tadpole.load_csv_no_header(path_support_women)
    women_support = preprocessing_dataset.str_to_float(women_support)
    women_support = women_support * M_sup
    women_support = sp.csr_matrix(women_support, dtype=np.float32)
    support.append(women_support)
    support_t.append(women_support.T)

    path_support_men = "men_synth_noteasy.csv"
    men_support, _, _ = read_tadpole.load_csv_no_header(path_support_men)
    men_support = preprocessing_dataset.str_to_float(men_support)
    men_support = men_support * M_sup
    men_support = sp.csr_matrix(men_support, dtype=np.float32)
    support.append(men_support)
    support_t.append(men_support.T)

    path_support_women_84 = "age_84_92_women_synth_noteasy.csv"
    women_84_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_84)
    women_84_support = preprocessing_dataset.str_to_float(women_84_support)
    women_84_support = women_84_support * M_sup
    women_84_support = sp.csr_matrix(women_84_support, dtype=np.float32)
    support.append(women_84_support)
    support_t.append(women_84_support.T)

    path_support_men_84 = "age_84_92_men_synth_noteasy.csv"
    men_84_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_84)
    men_84_support = preprocessing_dataset.str_to_float(men_84_support)
    men_84_support = men_84_support * M_sup
    men_84_support = sp.csr_matrix(men_84_support, dtype=np.float32)
    support.append(men_84_support)
    support_t.append(men_84_support.T)

    path_support_84 = "age_84_92_synth_noteasy.csv"
    age84_support, _, _ = read_tadpole.load_csv_no_header(path_support_84)
    age84_support = preprocessing_dataset.str_to_float(age84_support)
    age84_support = age84_support * M_sup
    age84_support = sp.csr_matrix(age84_support, dtype=np.float32)
    support.append(age84_support)
    support_t.append(age84_support.T)

    path_support_women_79 = "age_79_84_women_synth_noteasy.csv"
    women_79_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_79)
    women_79_support = preprocessing_dataset.str_to_float(women_79_support)
    women_79_support = women_79_support * M_sup
    women_79_support = sp.csr_matrix(women_79_support, dtype=np.float32)
    support.append(women_79_support)
    support_t.append(women_79_support.T)

    path_support_men_79 = "age_79_84_men_synth_noteasy.csv"
    men_79_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_79)
    men_79_support = preprocessing_dataset.str_to_float(men_79_support)
    men_79_support = men_79_support * M_sup
    men_79_support = sp.csr_matrix(men_79_support, dtype=np.float32)
    support.append(men_79_support)
    support_t.append(men_79_support.T)

    path_support_79 = "age_79_84_synth_noteasy.csv"
    age79_support, _, _ = read_tadpole.load_csv_no_header(path_support_79)
    age79_support = preprocessing_dataset.str_to_float(age79_support)
    age79_support = age79_support * M_sup
    age79_support = sp.csr_matrix(age79_support, dtype=np.float32)
    support.append(age79_support)
    support_t.append(age79_support.T)

    path_support_women_74 = "age_74_79_women_synth_noteasy.csv"
    women_74_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_74)
    women_74_support = preprocessing_dataset.str_to_float(women_74_support)
    women_74_support = women_74_support * M_sup
    women_74_support = sp.csr_matrix(women_74_support, dtype=np.float32)
    support.append(women_74_support)
    support_t.append(women_74_support.T)

    path_support_men_74 = "age_74_79_men_synth_noteasy.csv"
    men_74_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_74)
    men_74_support = preprocessing_dataset.str_to_float(men_74_support)
    men_74_support = men_74_support * M_sup
    men_74_support = sp.csr_matrix(men_74_support, dtype=np.float32)
    support.append(men_74_support)
    support_t.append(men_74_support.T)

    path_support_74 = "age_74_79_synth_noteasy.csv"
    age74_support, _, _ = read_tadpole.load_csv_no_header(path_support_74)
    age74_support = preprocessing_dataset.str_to_float(age74_support)
    age74_support = age74_support * M_sup
    age74_support = sp.csr_matrix(age74_support, dtype=np.float32)
    support.append(age74_support)
    support_t.append(age74_support.T)

    path_support_women_69 = "age_69_74_women_synth_noteasy.csv"
    women_69_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_69)
    women_69_support = preprocessing_dataset.str_to_float(women_69_support)
    women_69_support = women_69_support * M_sup
    women_69_support = sp.csr_matrix(women_69_support, dtype=np.float32)
    support.append(women_69_support)
    support_t.append(women_69_support.T)

    path_support_men_69 = "age_69_74_men_synth_noteasy.csv"
    men_69_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_69)
    men_69_support = preprocessing_dataset.str_to_float(men_69_support)
    men_69_support = men_69_support * M_sup
    men_69_support = sp.csr_matrix(men_69_support, dtype=np.float32)
    support.append(men_69_support)
    support_t.append(men_69_support.T)

    path_support_69 = "age_69_74_synth_noteasy.csv"
    age69_support, _, _ = read_tadpole.load_csv_no_header(path_support_69)
    age69_support = preprocessing_dataset.str_to_float(age69_support)
    age69_support = age69_support * M_sup
    age69_support = sp.csr_matrix(age69_support, dtype=np.float32)
    support.append(age69_support)
    support_t.append(age69_support.T)

    path_support_women_64 = "age_64_69_women_synth_noteasy.csv"
    women_64_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_64)
    women_64_support = preprocessing_dataset.str_to_float(women_64_support)
    women_64_support = women_64_support * M_sup
    women_64_support = sp.csr_matrix(women_64_support, dtype=np.float32)
    support.append(women_64_support)
    support_t.append(women_64_support.T)

    path_support_men_64 = "age_64_69_men_synth_noteasy.csv"
    men_64_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_64)
    men_64_support = preprocessing_dataset.str_to_float(men_64_support)
    men_64_support = men_64_support * M_sup
    men_64_support = sp.csr_matrix(men_64_support, dtype=np.float32)
    support.append(men_64_support)
    support_t.append(men_64_support.T)

    path_support_64 = "age_64_69_synth_noteasy.csv"
    age64_support, _, _ = read_tadpole.load_csv_no_header(path_support_64)
    age64_support = preprocessing_dataset.str_to_float(age64_support)
    age64_support = age64_support * M_sup
    age64_support = sp.csr_matrix(age64_support, dtype=np.float32)
    support.append(age64_support)
    support_t.append(age64_support.T)

    path_support_women_59 = "age_59_64_women_synth_noteasy.csv"
    women_59_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_59)
    women_59_support = preprocessing_dataset.str_to_float(women_59_support)
    women_59_support = women_59_support * M_sup
    women_59_support = sp.csr_matrix(women_59_support, dtype=np.float32)
    support.append(women_59_support)
    support_t.append(women_59_support.T)

    path_support_men_59 = "age_59_64_men_synth_noteasy.csv"
    men_59_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_59)
    men_59_support = preprocessing_dataset.str_to_float(men_59_support)
    men_59_support = men_59_support * M_sup
    men_59_support = sp.csr_matrix(men_59_support, dtype=np.float32)
    support.append(men_59_support)
    support_t.append(men_59_support.T)

    path_support_59 = "age_59_64_synth_noteasy.csv"
    age59_support, _, _ = read_tadpole.load_csv_no_header(path_support_59)
    age59_support = preprocessing_dataset.str_to_float(age59_support)
    age59_support = age59_support * M_sup
    age59_support = sp.csr_matrix(age59_support, dtype=np.float32)
    support.append(age59_support)
    support_t.append(age59_support.T)

    path_support_women_54 = "age_54_59_women_synth_noteasy.csv"
    women_54_support, _, _ = read_tadpole.load_csv_no_header(
        path_support_women_54)
    women_54_support = preprocessing_dataset.str_to_float(women_54_support)
    women_54_support = women_54_support * M_sup
    women_54_support = sp.csr_matrix(women_54_support, dtype=np.float32)
    support.append(women_54_support)
    support_t.append(women_54_support.T)

    path_support_men_54 = "age_54_59_men_synth_noteasy.csv"
    men_54_support, _, _ = read_tadpole.load_csv_no_header(path_support_men_54)
    men_54_support = preprocessing_dataset.str_to_float(men_54_support)
    men_54_support = men_54_support * M_sup
    men_54_support = sp.csr_matrix(men_54_support, dtype=np.float32)
    support.append(men_54_support)
    support_t.append(men_54_support.T)

    path_support_54 = "age_54_59_synth_noteasy.csv"
    age54_support, _, _ = read_tadpole.load_csv_no_header(path_support_54)
    age54_support = preprocessing_dataset.str_to_float(age54_support)
    age54_support = age54_support * M_sup
    age54_support = sp.csr_matrix(age54_support, dtype=np.float32)
    support.append(age54_support)
    support_t.append(age54_support.T)

    num_support = len(support)
    mask_support_t = []
    Osupport_t = sp.csr_matrix(Osupport_t, dtype=np.int)
    for i in range(num_support):
        mask_support_t.append(Osupport_t.T)

    mask_support_t = sp.hstack(mask_support_t, format='csr')

    support = sp.hstack(support, format='csr')
    support_t = sp.hstack(support_t, format='csr')

    # Collect all user and item nodes for test set
    test_u = list(set(test_u_indices))
    test_v = list(set(test_v_indices))
    test_u_dict = {n: i for i, n in enumerate(test_u)}
    test_v_dict = {n: i for i, n in enumerate(test_v)}

    test_u_indices = np.array([test_u_dict[o] for o in test_u_indices])
    test_v_indices = np.array([test_v_dict[o] for o in test_v_indices])
    test_support = support[np.array(test_u)]
    for i in range(test_support.shape[0]):
        for j in range(563, test_support.shape[1], 564):
            test_support[i, j] = 0.0
    test_support_t = sp.csr_matrix.multiply(support_t, mask_support_t)

    # Collect all user and item nodes for validation set
    val_u = list(set(val_u_indices))
    val_v = list(set(val_v_indices))
    val_u_dict = {n: i for i, n in enumerate(val_u)}
    val_v_dict = {n: i for i, n in enumerate(val_v)}

    val_u_indices = np.array([val_u_dict[o] for o in val_u_indices])
    val_v_indices = np.array([val_v_dict[o] for o in val_v_indices])
    val_support = support[np.array(val_u)]
    for i in range(val_support.shape[0]):
        for j in range(563, val_support.shape[1], 564):
            val_support[i, j] = 0.0
    val_support_t = sp.csr_matrix.multiply(support_t, mask_support_t)

    # Collect all user and item nodes for train set
    train_u = list(set(train_u_indices))
    train_v = list(set(train_v_indices))
    train_u_dict = {n: i for i, n in enumerate(train_u)}
    train_v_dict = {n: i for i, n in enumerate(train_v)}

    train_u_indices = np.array([train_u_dict[o] for o in train_u_indices])
    train_v_indices = np.array([train_v_dict[o] for o in train_v_indices])
    train_support = support[np.array(train_u)]
    train_support_t = sp.csr_matrix.multiply(support_t, mask_support_t)

    placeholders = {
        'u_features':
        tf.sparse_placeholder(tf.float32,
                              shape=np.array(u_features.shape,
                                             dtype=np.int64)),
        'v_features':
        tf.sparse_placeholder(tf.float32,
                              shape=np.array(v_features.shape,
                                             dtype=np.int64)),
        'u_features_nonzero':
        tf.placeholder(tf.int32, shape=()),
        'v_features_nonzero':
        tf.placeholder(tf.int32, shape=()),
        'labels':
        tf.placeholder(tf.float32, shape=(None, )),
        'indices_labels':
        tf.placeholder(tf.int32, shape=(None, )),
        'user_indices':
        tf.placeholder(tf.int32, shape=(None, )),
        'item_indices':
        tf.placeholder(tf.int32, shape=(None, )),
        'dropout':
        tf.placeholder_with_default(0., shape=()),
        'weight_decay':
        tf.placeholder_with_default(0., shape=()),
        'support':
        tf.sparse_placeholder(tf.float32, shape=(None, None)),
        'support_t':
        tf.sparse_placeholder(tf.float32, shape=(None, None)),
    }
    div = hidden[0] // num_support
    if hidden[0] % num_support != 0:
        print(
            """\nWARNING: HIDDEN[0] (=%d) of stack layer is adjusted to %d such that
                      it can be evenly split in %d splits.\n""" %
            (hidden[0], num_support * div, num_support))
    hidden[0] = num_support * div

    # create model
    model = MG_GAE(placeholders,
                   input_dim=u_features.shape[1],
                   num_support=num_support,
                   hidden=hidden,
                   num_users=m,
                   num_items=n,
                   learning_rate=lr,
                   gamma=gamma,
                   beta=beta,
                   logging=True)

    # Convert sparse placeholders to tuples to construct feed_dict
    test_support = sparse_to_tuple(test_support)
    test_support_t = sparse_to_tuple(test_support_t)

    val_support = sparse_to_tuple(val_support)
    val_support_t = sparse_to_tuple(val_support_t)

    train_support = sparse_to_tuple(train_support)
    train_support_t = sparse_to_tuple(train_support_t)

    u_features = sparse_to_tuple(u_features)
    v_features = sparse_to_tuple(v_features)

    assert u_features[2][1] == v_features[2][
        1], 'Number of features of users and items must be the same!'

    num_features = u_features[2][1]
    u_features_nonzero = u_features[1].shape[0]
    v_features_nonzero = v_features[1].shape[0]

    indices_labels = [563] * train_labels.shape[0]
    indices_labels_val = [563] * val_labels.shape[0]
    indices_labels_test = [563] * test_labels.shape[0]

    # Feed_dicts for validation and test set stay constant over different update steps
    train_feed_dict = construct_feed_dict(placeholders, u_features, v_features,
                                          u_features_nonzero,
                                          v_features_nonzero, train_support,
                                          train_support_t, train_labels,
                                          indices_labels, train_u_indices,
                                          train_v_indices, 0.)
    # No dropout for validation and test runs
    val_feed_dict = construct_feed_dict(placeholders, u_features, v_features,
                                        u_features_nonzero, v_features_nonzero,
                                        val_support, val_support_t, val_labels,
                                        indices_labels_val, val_u_indices,
                                        val_v_indices, 0.)

    test_feed_dict = construct_feed_dict(placeholders, u_features, v_features,
                                         u_features_nonzero,
                                         v_features_nonzero, test_support,
                                         test_support_t, test_labels,
                                         indices_labels_test, test_u_indices,
                                         test_v_indices, 0.)

    # Collect all variables to be logged into summary
    merged_summary = tf.summary.merge_all()

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    auc_train = []
    auc_test = []
    auc_val = []
    test_pred = []
    for epoch in range(NB_EPOCH):

        t = time.time()

        # Run single weight update
        outs = sess.run([
            model.training_op, model.loss, model.indices, model.labels,
            model.outputs, model.labels_class, model.classification,
            model.inputs, model.gcn_u, model.gcn_v, model.loss_frob,
            model.binary_entropy, model.u_inputs, model.v_inputs, model.weight,
            model.input_u, model.input_v, model.u_indices, model.v_indices
        ],
                        feed_dict=train_feed_dict)
        train_avg_loss = outs[1]
        label_train = outs[5]
        output_train = outs[6]

        fpr_train, tpr_train, thresholds_train = roc_curve(
            label_train, output_train, pos_label=label_train.max())
        roc_auc_train = auc(fpr_train, tpr_train)
        auc_train.append(roc_auc_train)

        val_avg_loss, val_classification, val_labels_corres = sess.run(
            [model.loss, model.classification, model.labels_class],
            feed_dict=val_feed_dict)  #test_feed_dict)#
        fpr_val, tpr_val, thresholds_train = roc_curve(
            val_labels_corres, val_classification, pos_label=label_train.max())
        roc_auc_val = auc(fpr_val, tpr_val)
        auc_val.append(roc_auc_val)

        test_avg_loss, test_classification, test_labels_corres = sess.run(
            [model.loss, model.classification, model.labels_class],
            feed_dict=test_feed_dict)
        fpr_test, tpr_test, thresholds_test = roc_curve(
            test_labels_corres,
            test_classification,
            pos_label=label_train.max())
        roc_auc_test = auc(fpr_test, tpr_test)
        auc_test.append(roc_auc_test)
        test_pred.append(test_classification)
        if VERBOSE:
            print("[*] Epoch:", '%04d' % (epoch + 1), "train_loss=",
                  "{:.5f}".format(train_avg_loss), "train_auc=",
                  "{:.5f}".format(roc_auc_train), "val_loss=",
                  "{:.5f}".format(val_avg_loss), "val_auc=",
                  "{:.5f}".format(roc_auc_val), "\t\ttime=",
                  "{:.5f}".format(time.time() - t))
            print('test auc = ', roc_auc_test)

    sess.close()

    return auc_test, auc_train, auc_val
Exemplo n.º 20
0
def train_gcn(features, adj_train, train_edges, train_edges_false, test_edges,
              test_edges_false):
    # Settings
    flags = tf.app.flags
    FLAGS = flags.FLAGS
    flags.DEFINE_float('learning_rate', 0.005, 'Initial learning rate.')
    flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.')
    flags.DEFINE_integer('hidden1', 96, 'Number of units in hidden layer 1.')
    flags.DEFINE_integer('hidden2', 48, 'Number of units in hidden layer 2.')
    flags.DEFINE_float('weight_decay', 0.,
                       'Weight for L2 loss on embedding matrix.')
    flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).')
    flags.DEFINE_string('model', 'gcn_vae', 'Model string.')
    flags.DEFINE_integer('features', 1,
                         'Whether to use features (1) or not (0).')

    model_str = FLAGS.model

    #1-dim index array, used in cost function to only focus on those interactions with high confidence
    mask_index = construct_optimizer_list(features.shape[0], train_edges,
                                          train_edges_false)

    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj_train
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    adj = adj_train

    if FLAGS.features == 0:
        features = sp.identity(features.shape[0])  # featureless

    # Some preprocessing
    adj_norm = preprocess_graph(adj)

    # Define placeholders
    placeholders = {
        'features': tf.sparse_placeholder(tf.float64),
        'adj': tf.sparse_placeholder(tf.float64),
        'adj_orig': tf.sparse_placeholder(tf.float64),
        'dropout': tf.placeholder_with_default(0., shape=())
    }

    num_nodes = adj.shape[0]

    features = sparse_to_tuple(features.tocoo())
    num_features = features[2][1]
    features_nonzero = features[1].shape[0]

    # Create model
    model = None
    if model_str == 'gcn_ae':
        model = GCNModelAE(placeholders, num_features, features_nonzero)
    elif model_str == 'gcn_vae':
        model = GCNModelVAE(placeholders, num_features, num_nodes,
                            features_nonzero)

    pos_weight = 1
    norm = 1
    #pos_weight = train_edges_false.shape[0] / float(train_edges.shape[0])
    #norm = (train_edges.shape[0]+train_edges_false.shape[0]) / float(train_edges_false.shape[0]*train_edges_false.shape[0])

    # Optimizer
    with tf.name_scope('optimizer'):
        if model_str == 'gcn_ae':
            opt = OptimizerAE(preds=model.reconstructions,
                              labels=tf.reshape(
                                  tf.sparse_tensor_to_dense(
                                      placeholders['adj_orig'],
                                      validate_indices=False), [-1]),
                              pos_weight=pos_weight,
                              norm=norm,
                              mask=mask_index)
        elif model_str == 'gcn_vae':
            opt = OptimizerVAE(preds=model.reconstructions,
                               labels=tf.reshape(
                                   tf.sparse_tensor_to_dense(
                                       placeholders['adj_orig'],
                                       validate_indices=False), [-1]),
                               model=model,
                               num_nodes=num_nodes,
                               pos_weight=pos_weight,
                               norm=norm,
                               mask=mask_index)

    # Initialize session
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    adj_label = adj_train + sp.eye(adj_train.shape[0])
    adj_label = sparse_to_tuple(adj_label)

    # Train model
    for epoch in range(FLAGS.epochs):

        t = time.time()
        # Construct feed dictionary
        feed_dict = construct_feed_dict(adj_norm, adj_label, features,
                                        placeholders)
        feed_dict.update({placeholders['dropout']: FLAGS.dropout})
        # Run single weight update
        outs = sess.run([opt.opt_op, opt.cost], feed_dict=feed_dict)

        print("Epoch:", '%04d' % (epoch + 1), "train_loss=",
              "{:.5f}".format(outs[1]))

    print("Optimization Finished!")

    #return embedding for each protein
    emb = sess.run(model.z_mean, feed_dict=feed_dict)
    return emb
Exemplo n.º 21
0
    features = sp.identity(features.shape[0])  # featureless
logging.info('preprocessing data')
# Some preprocessing
adj_norm = preprocess_graph(adj)
logging.info('done preprocessing data')
# Define placeholders
placeholders = {
    'features': tf.sparse_placeholder(tf.float32),
    'adj': tf.sparse_placeholder(tf.float32),
    'adj_orig': tf.sparse_placeholder(tf.float32),
    'dropout': tf.placeholder_with_default(0., shape=())
}

num_nodes = adj.shape[0]

features = sparse_to_tuple(features.tocoo())
num_features = features[2][1]
features_nonzero = features[1].shape[0]
logging.info('create model')
# Create model
model = None
if model_str == 'gcn_ae':
    model = GCNModelAE(placeholders, num_features, features_nonzero)
elif model_str == 'gcn_vae':
    model = GCNModelVAE(placeholders, num_features, num_nodes,
                        features_nonzero)

pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float(
    (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
logging.info('optimizer')
Exemplo n.º 22
0
def main(args):
    
    dataset = args.dataset
    emb_output_dir = args.output
    epochs = args.epochs
    agg = args.agg
    p = args.p
    tr = args.tr
    lam = args.lam
    lose_func = args.loss

    # Preprocess dataset
    adj, views_features = load_data(dataset, num_views=3)
    adj_orig = adj
    adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()
    # Calculate pairwise simlarity.
    views_sim_matrix = {}
    views_feature_matrix = {}

    for view in list(views_features.keys()):
        feature_matrix = csc_matrix.todense(views_features[view])
        views_feature_matrix.update({view:feature_matrix})
 
    kernal = "rbf"
    if lose_func == 'all':
        attr_sim = cal_attr_sim(views_feature_matrix, dataset)
    else:
        attr_sim = 0

    # split nodes to train, valid and test datasets, 
    # remove test edges from train adjacent matrix. 
    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(dataset, adj)
    
    print("Masking edges Done!")
    adj = adj_train
    nx_G = nx.from_numpy_array(adj.toarray())
    num_nodes = adj.shape[0]
    adj_norm = preprocess_graph(adj)

    views_features_num = {}
    views_features_nonzero = {}
    for view in list(views_features.keys()):
        views_features[view] = sparse_to_tuple(views_features[view].tocoo())
        views_features_num.update({view:views_features[view][2][1]})
        views_features_nonzero.update({view:views_features[view][1].shape[0]})
    
    # Build model
    MagCAE = {}
    for view in list(views_features.keys()):
        x,y = views_features[view][2][0], views_features[view][2][1]
        model = GAE(y, views_features_nonzero[view], adj_norm, math.ceil(2*p*y), math.ceil(p*y))
        MagCAE.update({view:model})

    # Loss function and optimizer.
    # loss weight taken by each nodes to the total loss.
    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) /adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(adj.shape[0] * adj.shape[0] - adj.sum())*2
    optimizer = tf.keras.optimizers.Adam()

    adj_targ = adj_train + sp.eye(adj_train.shape[0])
    adj_targ = sparse_to_tuple(adj_targ)

    indices= np.array(adj_targ[0])
    values = np.array(adj_targ[1])
    dense_shape = np.array(adj_targ[2])
    sparse_targ = tf.SparseTensor(indices = indices,
                                    values = values,
                                    dense_shape = dense_shape)
    sparse_targ = tf.cast(sparse_targ, dtype=tf.float32)

    adj_targ = tf.sparse.to_dense(sparse_targ)
    adj_targ = tf.reshape(adj_targ,[-1])
    # Train and Evaluate Model
    # Training Loop:
    # In each epoch: views - > view_embedding -> aggregate embedding -> total loss ->  update gradients
    decoder = Decoder(100)

    for epoch in range(epochs):
        loss = 0
        start = time.time()

        with tf.GradientTape() as tape:
            ag_embedding ={}


            for VAE in list(MagCAE.keys()):
                v_embedding, a_hat = MagCAE[VAE](views_features[VAE])
                ag_embedding.update({VAE:v_embedding})

            # aggregate embeddings
            embedding, aggregator = aggregate_embeddings(ag_embedding, agg)
            # reconstruct a_hat
            a_hat = decoder(embedding)
            loss += loss_function(a_hat, adj_targ, pos_weight, norm, attr_sim, embedding, num_nodes, lam, lose_func)

        if agg == "weighted_concat":
            variables = MagCAE['view1'].trainable_variables + MagCAE['view2'].trainable_variables + MagCAE['view3'].trainable_variables + aggregator.trainable_variables

        gradients = tape.gradient(loss, variables)
        optimizer.apply_gradients(zip(gradients, variables))

        # Evaluate on validate set
        embedding = np.array(embedding)
        roc_cur, ap_cur, _, _ = evaluate(val_edges, val_edges_false, adj_orig, embedding)

        print("Epoch {}: Val_Roc {:.4f}, Val_AP {:.4f}, Time Consumed {:.2f} sec\n".format(epoch+1, roc_cur, ap_cur, time.time()-start))

    print("Training Finished!")
    
    # Evaluation Result on test Edges
    test_embedding= {}
    for VAE in list(MagCAE.keys()):
        v_embedding, a_hat = MagCAE[VAE](views_features[VAE])
        test_embedding.update({VAE:v_embedding})

    # aggregate embeddings
    embedding, aggregator = aggregate_embeddings(test_embedding, agg)
    embedding = np.array(embedding) # embedding is a tensor, convert to np array.

    # reconstruct a_hat
    test_roc, test_ap, fpr, tpr = evaluate(test_edges, test_edges_false, adj_orig, embedding)
    print("MagCAE test result on {}".format(dataset))
    print("Test Roc: {}, Test AP: {}, P: {}, Training Ratio: {}, Lambda: {}.".format(test_roc, test_ap, p, tr, lam))
Exemplo n.º 23
0
    logging.warning(u"运行日志:构建不含边信息的模型")
    model = RecommenderGAE(placeholders,
                           input_dim=u_features.shape[1],
                           num_classes=NUMCLASSES,
                           num_support=num_support,
                           self_connections=SELFCONNECTIONS,
                           num_basis_functions=BASES,
                           hidden=HIDDEN,
                           num_users=num_users,
                           num_items=num_items,
                           accum=ACCUM,
                           learning_rate=LR,
                           logging=True)

# Convert sparse placeholders to tuples to construct feed_dict
val_support = sparse_to_tuple(val_support)
val_support_t = sparse_to_tuple(val_support_t)

train_support = sparse_to_tuple(train_support)
train_support_t = sparse_to_tuple(train_support_t)

u_features = sparse_to_tuple(u_features)
v_features = sparse_to_tuple(v_features)
assert u_features[2][1] == v_features[2][1], 'Number of features of users and items must be the same!'

num_features = u_features[2][1]
u_features_nonzero = u_features[1].shape[0]
v_features_nonzero = v_features[1].shape[0]

# 使用二部图输入作为训练输出的idx以及损失函数的label
# train_labels, train_u_indices, train_v_indices, u_dict, v_dict = get_original_labels()
Exemplo n.º 24
0
def run(DATASET='douban',
        DATASEED=1234,
        random_seed=123,
        NB_EPOCH=200,
        DO=0,
        HIDDEN=[100, 75],
        FEATHIDDEN=64,
        LR=0.01,
        decay_rate=1.25,
        consecutive_threshold=5,
        FEATURES=False,
        SYM=True,
        TESTING=False,
        ACCUM='stackRGGCN',
        NUM_LAYERS=1,
        GCMC_INDICES=False):
    np.random.seed(random_seed)
    tf.set_random_seed(random_seed)

    SELFCONNECTIONS = False
    SPLITFROMFILE = True
    VERBOSE = False
    BASES = 2
    WRITESUMMARY = False
    SUMMARIESDIR = 'logs/'

    if DATASET == 'ml_1m' or DATASET == 'ml_100k' or DATASET == 'douban':
        NUMCLASSES = 5
    elif DATASET == 'ml_10m':
        NUMCLASSES = 10
        print(
            '\n WARNING: this might run out of RAM, consider using train_minibatch.py for dataset %s'
            % DATASET)
        print(
            'If you want to proceed with this option anyway, uncomment this.\n'
        )
        sys.exit(1)
    elif DATASET == 'flixster':
        NUMCLASSES = 10
    elif DATASET == 'yahoo_music':
        NUMCLASSES = 71
        if ACCUM == 'sum':
            print(
                '\n WARNING: combining DATASET=%s with ACCUM=%s can cause memory issues due to large number of classes.'
            )
            print(
                'Consider using "--accum stack" as an option for this dataset.'
            )
            print(
                'If you want to proceed with this option anyway, uncomment this.\n'
            )
            sys.exit(1)

    # Splitting dataset in training, validation and test set

    if DATASET == 'ml_1m' or DATASET == 'ml_10m':
        if FEATURES:
            datasplit_path = 'data/' + DATASET + '/withfeatures_split_seed' + str(
                DATASEED) + '.pickle'
        else:
            datasplit_path = 'data/' + DATASET + '/split_seed' + str(
                DATASEED) + '.pickle'
    elif FEATURES:
        datasplit_path = 'data/' + DATASET + '/withfeatures.pickle'
    else:
        datasplit_path = 'data/' + DATASET + '/nofeatures.pickle'

    if DATASET == 'flixster' or DATASET == 'douban' or DATASET == 'yahoo_music':
        u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices, \
         val_labels, val_u_indices, val_v_indices, test_labels, \
         test_u_indices, test_v_indices, class_values = load_data_monti(DATASET, TESTING)

    elif DATASET == 'ml_100k':
        print(
            "Using official MovieLens dataset split u1.base/u1.test with 20% validation set size..."
        )
        u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices, \
         val_labels, val_u_indices, val_v_indices, test_labels, \
         test_u_indices, test_v_indices, class_values = load_official_trainvaltest_split(DATASET, TESTING)
    else:
        print("Using random dataset split ...")
        u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices, \
         val_labels, val_u_indices, val_v_indices, test_labels, \
         test_u_indices, test_v_indices, class_values = create_trainvaltest_split(DATASET, DATASEED, TESTING,
                            datasplit_path, SPLITFROMFILE,
                            VERBOSE)

    num_users, num_items = adj_train.shape
    num_side_features = 0

    # feature loading
    if not FEATURES:
        u_features = sp.identity(
            num_users, format='csr')  # features is just one-hot vector!
        v_features = sp.identity(num_items, format='csr')

        u_features, v_features = preprocess_user_item_features(
            u_features, v_features)

    elif FEATURES and u_features is not None and v_features is not None:
        # use features as side information and node_id's as node input features

        print("Normalizing feature vectors...")
        u_features_side = normalize_features(u_features)
        v_features_side = normalize_features(v_features)

        u_features_side, v_features_side = preprocess_user_item_features(
            u_features_side, v_features_side)

        u_features_side = np.array(u_features_side.todense(), dtype=np.float32)
        v_features_side = np.array(v_features_side.todense(), dtype=np.float32)

        num_side_features = u_features_side.shape[1]

        # node id's for node input features
        id_csr_v = sp.identity(num_items, format='csr')
        id_csr_u = sp.identity(num_users, format='csr')

        u_features, v_features = preprocess_user_item_features(
            id_csr_u, id_csr_v)

    else:
        raise ValueError(
            'Features flag is set to true but no features are loaded from dataset '
            + DATASET)

    # print("User features shape: " + str(u_features.shape))
    # print("Item features shape: " + str(v_features.shape))
    # print("adj_train shape: " + str(adj_train.shape))

    # global normalization
    support = []
    support_t = []
    adj_train_int = sp.csr_matrix(adj_train, dtype=np.int32)

    for i in range(NUMCLASSES):
        # build individual binary rating matrices (supports) for each rating
        support_unnormalized = sp.csr_matrix(adj_train_int == i + 1,
                                             dtype=np.float32)

        if support_unnormalized.nnz == 0 and DATASET != 'yahoo_music':
            # yahoo music has dataset split with not all ratings types present in training set.
            # this produces empty adjacency matrices for these ratings.
            sys.exit(
                'ERROR: normalized bipartite adjacency matrix has only zero entries!!!!!'
            )

        support_unnormalized_transpose = support_unnormalized.T
        support.append(support_unnormalized)
        support_t.append(support_unnormalized_transpose)

    support = globally_normalize_bipartite_adjacency(support, symmetric=SYM)
    support_t = globally_normalize_bipartite_adjacency(support_t,
                                                       symmetric=SYM)

    if SELFCONNECTIONS:
        support.append(sp.identity(u_features.shape[0], format='csr'))
        support_t.append(sp.identity(v_features.shape[0], format='csr'))

    num_support = len(support)
    support = sp.hstack(support, format='csr')
    support_t = sp.hstack(support_t, format='csr')
    # support and support_t become 3000x15000 (for douban with 3000 users/items and 5 ratings)
    # support is n_users x (n_items*n_ratings). support_t is n_items x (n_users*ratings)
    # NOTE: support is sparse matrix so the shape may not be as large as expected (?)
    # When is num_support ever not == num_rating_classes?
    # print('support shape: ' + str(support.shape))
    # print('support_t shape: ' + str(support_t.shape))

    if ACCUM == 'stack' or ACCUM == 'stackRGGCN':
        div = HIDDEN[0] // num_support
        if HIDDEN[0] % num_support != 0:
            print(
                """\nWARNING: HIDDEN[0] (=%d) of stack layer is adjusted to %d such that
					  it can be evenly split in %d splits.\n""" %
                (HIDDEN[0], num_support * div, num_support))
        HIDDEN[0] = num_support * div

    ##################################################################################################################
    """ support contains only training set ratings. index into support using user/item indices to create test set support. """
    test_support = val_support = train_support = support
    test_support_t = val_support_t = train_support_t = support_t

    if GCMC_INDICES:
        # Collect all user and item nodes for test set
        test_u = list(set(test_u_indices))
        test_v = list(set(test_v_indices))
        test_support = support[np.array(test_u)]
        test_support_t = support_t[np.array(test_v)]

        # Collect all user and item nodes for validation set
        val_u = list(set(val_u_indices))
        val_v = list(set(val_v_indices))
        val_support = support[np.array(val_u)]
        val_support_t = support_t[np.array(val_v)]

        # Collect all user and item nodes for train set
        train_u = list(set(train_u_indices))
        train_v = list(set(train_v_indices))
        train_support = support[np.array(train_u)]
        train_support_t = support_t[np.array(train_v)]

        test_u_dict = {n: i for i, n in enumerate(test_u)}
        test_v_dict = {n: i for i, n in enumerate(test_v)}
        test_u_indices = np.array([test_u_dict[o] for o in test_u_indices])
        test_v_indices = np.array([test_v_dict[o] for o in test_v_indices])

        val_u_dict = {n: i for i, n in enumerate(val_u)}
        val_v_dict = {n: i for i, n in enumerate(val_v)}
        val_u_indices = np.array([val_u_dict[o] for o in val_u_indices])
        val_v_indices = np.array([val_v_dict[o] for o in val_v_indices])

        train_u_dict = {n: i for i, n in enumerate(train_u)}
        train_v_dict = {n: i for i, n in enumerate(train_v)}
        print('max train_u_indices: {}'.format(max(train_u_indices)))
        train_u_indices = np.array(
            [train_u_dict[o] for o in train_u_indices]
        )  ### HERE IS WHERE indices get changed to suit the new indexing into smaller set of users
        train_v_indices = np.array([train_v_dict[o] for o in train_v_indices])
        print('max train_u_indices after: {}'.format(max(train_u_indices)))

    # print('train_support_shape: {}'.format(train_support.shape)) # if GCMC_INDICES, THIS IS NO LONGER (n_users, n_items*n_rating_types). but < n_users
    ##################################################################################################################

    # features as side info
    if FEATURES:
        test_u_features_side = u_features_side[np.array(test_u)]
        test_v_features_side = v_features_side[np.array(test_v)]

        val_u_features_side = u_features_side[np.array(val_u)]
        val_v_features_side = v_features_side[np.array(val_v)]

        train_u_features_side = u_features_side[np.array(train_u)]
        train_v_features_side = v_features_side[np.array(train_v)]

    else:
        test_u_features_side = None
        test_v_features_side = None

        val_u_features_side = None
        val_v_features_side = None

        train_u_features_side = None
        train_v_features_side = None

    placeholders = {
        'u_features':
        tf.sparse_placeholder(tf.float32,
                              shape=np.array(u_features.shape,
                                             dtype=np.int64)),
        'v_features':
        tf.sparse_placeholder(tf.float32,
                              shape=np.array(v_features.shape,
                                             dtype=np.int64)),
        'u_features_nonzero':
        tf.placeholder(tf.int32, shape=()),
        'v_features_nonzero':
        tf.placeholder(tf.int32, shape=()),
        'labels':
        tf.placeholder(tf.int32, shape=(None, )),
        'u_features_side':
        tf.placeholder(tf.float32, shape=(None, num_side_features)),
        'v_features_side':
        tf.placeholder(tf.float32, shape=(None, num_side_features)),
        'user_indices':
        tf.placeholder(tf.int32, shape=(None, )),
        'item_indices':
        tf.placeholder(tf.int32, shape=(None, )),
        'class_values':
        tf.placeholder(tf.float32, shape=class_values.shape),
        'dropout':
        tf.placeholder_with_default(0., shape=()),
        'weight_decay':
        tf.placeholder_with_default(0., shape=()),
        'support':
        tf.sparse_placeholder(tf.float32, shape=(None, None)),
        'support_t':
        tf.sparse_placeholder(tf.float32, shape=(None, None)),
    }

    ##################################################################################################################
    E_start, E_end = get_edges_matrices(adj_train)
    # E_start = sp.hstack(E_start, format='csr')  # confirm if vstack is correct and not hstack
    # E_end = sp.hstack(E_end, format='csr')

    # placeholders['E_start'] = tf.sparse_placeholder(tf.float32, shape=(None, None, None))
    # placeholders['E_end'] = tf.sparse_placeholder(tf.float32, shape=(None, None, None))

    placeholders['E_start_list'] = []
    placeholders['E_end_list'] = []
    for i in range(num_support):
        placeholders['E_start_list'].append(
            tf.sparse_placeholder(tf.float32, shape=(None, None)))
        placeholders['E_end_list'].append(
            tf.sparse_placeholder(tf.float32, shape=(None, None)))

    # print('shape of E_end for first rating type: {}'.format(E_end[0].toarray().shape))

    ##################################################################################################################

    # create model
    if FEATURES:
        model = RecommenderSideInfoGAE(placeholders,
                                       input_dim=u_features.shape[1],
                                       feat_hidden_dim=FEATHIDDEN,
                                       num_classes=NUMCLASSES,
                                       num_support=num_support,
                                       self_connections=SELFCONNECTIONS,
                                       num_basis_functions=BASES,
                                       hidden=HIDDEN,
                                       num_users=num_users,
                                       num_items=num_items,
                                       accum=ACCUM,
                                       learning_rate=LR,
                                       num_side_features=num_side_features,
                                       logging=True)
    else:
        model = RecommenderGAE(placeholders,
                               input_dim=u_features.shape[1],
                               num_classes=NUMCLASSES,
                               num_support=num_support,
                               self_connections=SELFCONNECTIONS,
                               num_basis_functions=BASES,
                               hidden=HIDDEN,
                               num_users=num_users,
                               num_items=num_items,
                               accum=ACCUM,
                               learning_rate=LR,
                               num_layers=NUM_LAYERS,
                               logging=True)

    # Convert sparse placeholders to tuples to construct feed_dict. sparse placeholders expect tuple of (indices, values, shape)
    test_support = sparse_to_tuple(test_support)
    test_support_t = sparse_to_tuple(test_support_t)

    val_support = sparse_to_tuple(val_support)
    val_support_t = sparse_to_tuple(val_support_t)

    train_support = sparse_to_tuple(train_support)
    train_support_t = sparse_to_tuple(train_support_t)

    u_features = sparse_to_tuple(u_features)
    v_features = sparse_to_tuple(v_features)
    assert u_features[2][1] == v_features[2][
        1], 'Number of features of users and items must be the same!'

    num_features = u_features[2][1]
    u_features_nonzero = u_features[1].shape[0]
    v_features_nonzero = v_features[1].shape[0]

    # setting E_start to be the same for train, val, and test. E_start already only contains train edges (from preprocessing script)
    train_E_start = []
    train_E_end = []
    # print('LENGTH OF E_START: {}'.format(len(E_start)))
    # print('NUM_SUPPORT: {}'.format(num_support))
    for i in range(num_support):
        train_E_start.append(sparse_to_tuple(E_start[i]))
        train_E_end.append(sparse_to_tuple(E_end[i]))
    val_E_start = test_E_start = train_E_start
    val_E_end = test_E_end = train_E_end

    # Feed_dicts for validation and test set stay constant over different update steps
    train_feed_dict = construct_feed_dict(
        placeholders, u_features, v_features, u_features_nonzero,
        v_features_nonzero, train_support, train_support_t, train_labels,
        train_u_indices, train_v_indices, class_values, DO,
        train_u_features_side, train_v_features_side, train_E_start,
        train_E_end)

    # No dropout for validation and test runs. DO = dropout. input for val and test is same u_features and v_features.
    val_feed_dict = construct_feed_dict(
        placeholders, u_features, v_features, u_features_nonzero,
        v_features_nonzero, val_support, val_support_t, val_labels,
        val_u_indices, val_v_indices, class_values, 0., val_u_features_side,
        val_v_features_side, val_E_start, val_E_end)

    test_feed_dict = construct_feed_dict(
        placeholders, u_features, v_features, u_features_nonzero,
        v_features_nonzero, test_support, test_support_t, test_labels,
        test_u_indices, test_v_indices, class_values, 0., test_u_features_side,
        test_v_features_side, test_E_start, test_E_end)

    # Collect all variables to be logged into summary
    merged_summary = tf.summary.merge_all()

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    if WRITESUMMARY:
        train_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/train',
                                                     sess.graph)
        val_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/val')
    else:
        train_summary_writer = None
        val_summary_writer = None

    best_val_score = np.inf
    best_val_loss = np.inf
    best_epoch = 0
    wait = 0

    print('Training...')

    #### COUTNING PARAMS
    total_parameters = 0
    for variable in tf.trainable_variables():
        # shape is an array of tf.Dimension
        shape = variable.get_shape()
        variable_parameters = 1
        for dim in shape:
            variable_parameters *= dim.value
        total_parameters += variable_parameters
    print('Total params: {}'.format(total_parameters))

    # FOR A VARIABLE LEARNING RATE
    assign_placeholder = tf.placeholder(tf.float32)
    assign_op = model.learning_rate.assign(assign_placeholder)
    old_loss = float('inf')
    # print('Original learning rate is {}'.format(sess.run(model.optimizer._lr)))

    train_rmses, val_rmses, train_losses, val_losses = [], [], [], []
    for epoch in tqdm(range(NB_EPOCH)):
        t = time.time()
        # Run single weight update
        # outs = sess.run([model.opt_op, model.loss, model.rmse], feed_dict=train_feed_dict)
        # with exponential moving averages
        outs = sess.run([model.training_op, model.loss, model.rmse],
                        feed_dict=train_feed_dict)

        train_avg_loss = outs[1]
        train_rmse = outs[2]

        val_avg_loss, val_rmse = sess.run([model.loss, model.rmse],
                                          feed_dict=val_feed_dict)

        # if train_avg_loss > 0.999*old_loss:
        # 	consecutive += 1
        # 	if consecutive >= consecutive_threshold:
        # 		LR /= decay_rate
        # 		sess.run(assign_op, feed_dict={assign_placeholder: LR})
        # 		print('New learning rate is {}'.format(sess.run(model.optimizer._lr)))
        # 		consecutive = 0
        # else:
        # 	consecutive = 0
        # old_loss = train_avg_loss

        train_rmses.append(train_rmse)
        val_rmses.append(val_rmse)
        train_losses.append(train_avg_loss)
        val_losses.append(val_avg_loss)

        if VERBOSE:
            print("[*] Epoch:", '%04d' % (epoch + 1), "train_loss=",
                  "{:.5f}".format(train_avg_loss), "train_rmse=",
                  "{:.5f}".format(train_rmse), "val_loss=",
                  "{:.5f}".format(val_avg_loss), "val_rmse=",
                  "{:.5f}".format(val_rmse), "\t\ttime=",
                  "{:.5f}".format(time.time() - t))

        if val_rmse < best_val_score:
            best_val_score = val_rmse
            best_epoch = epoch

        if epoch % 20 == 0 and WRITESUMMARY:
            # Train set summary
            summary = sess.run(merged_summary, feed_dict=train_feed_dict)
            train_summary_writer.add_summary(summary, epoch)
            train_summary_writer.flush()

            # Validation set summary
            summary = sess.run(merged_summary, feed_dict=val_feed_dict)
            val_summary_writer.add_summary(summary, epoch)
            val_summary_writer.flush()

        if epoch % 100 == 0 and epoch > 1000 and not TESTING and False:
            saver = tf.train.Saver()
            save_path = saver.save(sess,
                                   "tmp/%s_seed%d.ckpt" %
                                   (model.name, DATASEED),
                                   global_step=model.global_step)

            # load polyak averages
            variables_to_restore = model.variable_averages.variables_to_restore(
            )
            saver = tf.train.Saver(variables_to_restore)
            saver.restore(sess, save_path)

            val_avg_loss, val_rmse = sess.run([model.loss, model.rmse],
                                              feed_dict=val_feed_dict)

            print('polyak val loss = ', val_avg_loss)
            print('polyak val rmse = ', val_rmse)

            # Load back normal variables
            saver = tf.train.Saver()
            saver.restore(sess, save_path)

    # store model including exponential moving averages
    saver = tf.train.Saver()
    save_path = saver.save(sess,
                           "tmp/%s.ckpt" % model.name,
                           global_step=model.global_step)

    if VERBOSE:
        print("\nOptimization Finished!")
        print('best validation score =', best_val_score, 'at iteration',
              best_epoch)

    if TESTING:
        test_avg_loss, test_rmse = sess.run([model.loss, model.rmse],
                                            feed_dict=test_feed_dict)
        print('test loss = ', test_avg_loss)
        print('test rmse = ', test_rmse)

        # restore with polyak averages of parameters
        variables_to_restore = model.variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)
        saver.restore(sess, save_path)

        test_avg_loss, test_rmse = sess.run([model.loss, model.rmse],
                                            feed_dict=test_feed_dict)
        print('polyak test loss = ', test_avg_loss)
        print('polyak test rmse = ', test_rmse)

        sess.close()
        tf.reset_default_graph()
        return train_rmses, val_rmses, train_losses, val_losses, test_rmse
    else:
        # restore with polyak averages of parameters
        variables_to_restore = model.variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)
        saver.restore(sess, save_path)

        val_avg_loss, val_rmse = sess.run([model.loss, model.rmse],
                                          feed_dict=val_feed_dict)
        print('polyak val loss = ', val_avg_loss)
        print('polyak val rmse = ', val_rmse)

        sess.close()
        tf.reset_default_graph()
        return train_rmses, val_rmses, train_losses, val_losses, val_rmse
Exemplo n.º 25
0
def run(user_features, movie_features, learning_rate=0.01, epochs=500, hidden=[500, 75], feat_hidden=64, accumulation='sum', dropout=0.7,
        num_basis_functions=2, features=False, symmetric=True, testing=True):
  """accumulation can be sum or stack"""

  # Set random seed
  # seed = 123 # use only for unit testing
  seed = int(time.time())
  np.random.seed(seed)
  tf.set_random_seed(seed)
  tf.reset_default_graph()

  # Settings
  # ap = argparse.ArgumentParser()
  # # ap.add_argument("-d", "--dataset", type=str, default="ml_100k",
  # #               choices=['ml_100k', 'ml_1m', 'ml_10m', 'douban', 'yahoo_music', 'flixster'],
  # #               help="Dataset string.")

  # ap.add_argument("-lr", "--learning_rate", type=float, default=0.01,
  #                 help="Learning rate")

  # ap.add_argument("-e", "--epochs", type=int, default=2500,
  #                 help="Number training epochs")

  # ap.add_argument("-hi", "--hidden", type=int, nargs=2, default=[500, 75],
  #                 help="Number hidden units in 1st and 2nd layer")

  # ap.add_argument("-fhi", "--feat_hidden", type=int, default=64,
  #                 help="Number hidden units in the dense layer for features")

  # ap.add_argument("-ac", "--accumulation", type=str, default="sum", choices=['sum', 'stack'],
  #                 help="Accumulation function: sum or stack.")

  # ap.add_argument("-do", "--dropout", type=float, default=0.7,
  #                 help="Dropout fraction")

  # ap.add_argument("-nb", "--num_basis_functions", type=int, default=2,
  #                 help="Number of basis functions for Mixture Model GCN.")

  # ap.add_argument("-ds", "--data_seed", type=int, default=1234,
  #                 help="""Seed used to shuffle data in data_utils, taken from cf-nade (1234, 2341, 3412, 4123, 1324).
  #                      Only used for ml_1m and ml_10m datasets. """)

  # ap.add_argument("-sdir", "--summaries_dir", type=str, default='logs/' + str(datetime.datetime.now()).replace(' ', '_'),
  #                 help="Directory for saving tensorflow summaries.")

  # # Boolean flags
  # fp = ap.add_mutually_exclusive_group(required=False)
  # fp.add_argument('-nsym', '--norm_symmetric', dest='norm_symmetric',
  #                 help="Option to turn on symmetric global normalization", action='store_true')
  # fp.add_argument('-nleft', '--norm_left', dest='norm_symmetric',
  #                 help="Option to turn on left global normalization", action='store_false')
  # ap.set_defaults(norm_symmetric=True)

  # fp = ap.add_mutually_exclusive_group(required=False)
  # fp.add_argument('-f', '--features', dest='features',
  #                 help="Whether to use features (1) or not (0)", action='store_true')
  # fp.add_argument('-no_f', '--no_features', dest='features',
  #                 help="Whether to use features (1) or not (0)", action='store_false')
  # ap.set_defaults(features=False)

  # fp = ap.add_mutually_exclusive_group(required=False)
  # fp.add_argument('-ws', '--write_summary', dest='write_summary',
  #                 help="Option to turn on summary writing", action='store_true')
  # fp.add_argument('-no_ws', '--no_write_summary', dest='write_summary',
  #                 help="Option to turn off summary writing", action='store_false')
  # ap.set_defaults(write_summary=False)

  # fp = ap.add_mutually_exclusive_group(required=False)
  # fp.add_argument('-t', '--testing', dest='testing',
  #                 help="Option to turn on test set evaluation", action='store_true')
  # fp.add_argument('-v', '--validation', dest='testing',
  #                 help="Option to only use validation set evaluation", action='store_false')
  # ap.set_defaults(testing=False)


  # args = vars(ap.parse_args())

  # print('Settings:')
  # print(args, '\n')

  # Define parameters
  DATASET = 'ml_100k'
  DATASEED = 1234
  NB_EPOCH = epochs
  DO = dropout
  HIDDEN = hidden
  FEATHIDDEN = feat_hidden
  BASES = num_basis_functions
  LR = learning_rate
  WRITESUMMARY = False
  SUMMARIESDIR = 'logs/' + str(datetime.datetime.now()).replace(' ', '_')
  FEATURES = features
  SYM = symmetric
  TESTING = testing
  ACCUM = accumulation

  SELFCONNECTIONS = False
  SPLITFROMFILE = True
  VERBOSE = True

  NUMCLASSES = 5

  # Splitting dataset in training, validation and test set

  print("Using official MovieLens dataset split u1.base/u1.test with 20% validation set size...")
  u_features = user_features
  v_features = movie_features
  _, _, adj_train, train_labels, train_u_indices, train_v_indices, \
  val_labels, val_u_indices, val_v_indices, test_labels, \
  test_u_indices, test_v_indices, class_values = load_official_trainvaltest_split('ml_100k', TESTING)


  num_users, num_items = adj_train.shape

  num_side_features = 0

  # feature loading
  if not FEATURES:
      u_features = sp.identity(num_users, format='csr')
      v_features = sp.identity(num_items, format='csr')

      u_features, v_features = preprocess_user_item_features(u_features, v_features)

  elif FEATURES and u_features is not None and v_features is not None:
      # use features as side information and node_id's as node input features

      print("Normalizing feature vectors...")
      u_features_side = normalize_features(u_features)
      v_features_side = normalize_features(v_features)

      u_features_side, v_features_side = preprocess_user_item_features(u_features_side, v_features_side)

      u_features_side = np.array(u_features_side.todense(), dtype=np.float32)
      v_features_side = np.array(v_features_side.todense(), dtype=np.float32)

      num_side_features = u_features_side.shape[1]

      # node id's for node input features
      id_csr_v = sp.identity(num_items, format='csr')
      id_csr_u = sp.identity(num_users, format='csr')

      u_features, v_features = preprocess_user_item_features(id_csr_u, id_csr_v)

  else:
      raise ValueError('Features flag is set to true but no features are loaded from dataset ' + DATASET)


  # global normalization
  support = []
  support_t = []
  adj_train_int = sp.csr_matrix(adj_train, dtype=np.int32)

  for i in range(NUMCLASSES):
      # build individual binary rating matrices (supports) for each rating
      support_unnormalized = sp.csr_matrix(adj_train_int == i + 1, dtype=np.float32)

      if support_unnormalized.nnz == 0 and DATASET != 'yahoo_music':
          # yahoo music has dataset split with not all ratings types present in training set.
          # this produces empty adjacency matrices for these ratings.
          sys.exit('ERROR: normalized bipartite adjacency matrix has only zero entries!!!!!')

      support_unnormalized_transpose = support_unnormalized.T
      support.append(support_unnormalized)
      support_t.append(support_unnormalized_transpose)


  support = globally_normalize_bipartite_adjacency(support, symmetric=SYM)
  support_t = globally_normalize_bipartite_adjacency(support_t, symmetric=SYM)

  if SELFCONNECTIONS:
      support.append(sp.identity(u_features.shape[0], format='csr'))
      support_t.append(sp.identity(v_features.shape[0], format='csr'))

  num_support = len(support)
  support = sp.hstack(support, format='csr')
  support_t = sp.hstack(support_t, format='csr')

  if ACCUM == 'stack':
      div = HIDDEN[0] // num_support
      if HIDDEN[0] % num_support != 0:
          print("""\nWARNING: HIDDEN[0] (=%d) of stack layer is adjusted to %d such that
                    it can be evenly split in %d splits.\n""" % (HIDDEN[0], num_support * div, num_support))
      HIDDEN[0] = num_support * div

  # Collect all user and item nodes for test set
  test_u = list(set(test_u_indices))
  test_v = list(set(test_v_indices))
  test_u_dict = {n: i for i, n in enumerate(test_u)}
  test_v_dict = {n: i for i, n in enumerate(test_v)}

  test_u_indices = np.array([test_u_dict[o] for o in test_u_indices])
  test_v_indices = np.array([test_v_dict[o] for o in test_v_indices])

  test_support = support[np.array(test_u)]
  test_support_t = support_t[np.array(test_v)]

  # Collect all user and item nodes for validation set
  val_u = list(set(val_u_indices))
  val_v = list(set(val_v_indices))
  val_u_dict = {n: i for i, n in enumerate(val_u)}
  val_v_dict = {n: i for i, n in enumerate(val_v)}

  val_u_indices = np.array([val_u_dict[o] for o in val_u_indices])
  val_v_indices = np.array([val_v_dict[o] for o in val_v_indices])

  val_support = support[np.array(val_u)]
  val_support_t = support_t[np.array(val_v)]

  # Collect all user and item nodes for train set
  train_u = list(set(train_u_indices))
  train_v = list(set(train_v_indices))
  train_u_dict = {n: i for i, n in enumerate(train_u)}
  train_v_dict = {n: i for i, n in enumerate(train_v)}

  train_u_indices = np.array([train_u_dict[o] for o in train_u_indices])
  train_v_indices = np.array([train_v_dict[o] for o in train_v_indices])

  train_support = support[np.array(train_u)]
  train_support_t = support_t[np.array(train_v)]

  # features as side info
  if FEATURES:
      test_u_features_side = u_features_side[np.array(test_u)]
      test_v_features_side = v_features_side[np.array(test_v)]

      val_u_features_side = u_features_side[np.array(val_u)]
      val_v_features_side = v_features_side[np.array(val_v)]

      train_u_features_side = u_features_side[np.array(train_u)]
      train_v_features_side = v_features_side[np.array(train_v)]

  else:
      test_u_features_side = None
      test_v_features_side = None

      val_u_features_side = None
      val_v_features_side = None

      train_u_features_side = None
      train_v_features_side = None


  placeholders = {
      'u_features': tf.sparse_placeholder(tf.float32, shape=np.array(u_features.shape, dtype=np.int64)),
      'v_features': tf.sparse_placeholder(tf.float32, shape=np.array(v_features.shape, dtype=np.int64)),
      'u_features_nonzero': tf.placeholder(tf.int32, shape=()),
      'v_features_nonzero': tf.placeholder(tf.int32, shape=()),
      'labels': tf.placeholder(tf.int32, shape=(None,)),

      'u_features_side': tf.placeholder(tf.float32, shape=(None, num_side_features)),
      'v_features_side': tf.placeholder(tf.float32, shape=(None, num_side_features)),

      'user_indices': tf.placeholder(tf.int32, shape=(None,)),
      'item_indices': tf.placeholder(tf.int32, shape=(None,)),

      'class_values': tf.placeholder(tf.float32, shape=class_values.shape),

      'dropout': tf.placeholder_with_default(0., shape=()),
      'weight_decay': tf.placeholder_with_default(0., shape=()),

      'support': tf.sparse_placeholder(tf.float32, shape=(None, None)),
      'support_t': tf.sparse_placeholder(tf.float32, shape=(None, None)),
  }

  # create model
  if FEATURES:
      model = RecommenderSideInfoGAE(placeholders,
                                     input_dim=u_features.shape[1],
                                     feat_hidden_dim=FEATHIDDEN,
                                     num_classes=NUMCLASSES,
                                     num_support=num_support,
                                     self_connections=SELFCONNECTIONS,
                                     num_basis_functions=BASES,
                                     hidden=HIDDEN,
                                     num_users=num_users,
                                     num_items=num_items,
                                     accum=ACCUM,
                                     learning_rate=LR,
                                     num_side_features=num_side_features,
                                     logging=True)
  else:
      model = RecommenderGAE(placeholders,
                             input_dim=u_features.shape[1],
                             num_classes=NUMCLASSES,
                             num_support=num_support,
                             self_connections=SELFCONNECTIONS,
                             num_basis_functions=BASES,
                             hidden=HIDDEN,
                             num_users=num_users,
                             num_items=num_items,
                             accum=ACCUM,
                             learning_rate=LR,
                             logging=True)

  # Convert sparse placeholders to tuples to construct feed_dict
  test_support = sparse_to_tuple(test_support)
  test_support_t = sparse_to_tuple(test_support_t)

  val_support = sparse_to_tuple(val_support)
  val_support_t = sparse_to_tuple(val_support_t)

  train_support = sparse_to_tuple(train_support)
  train_support_t = sparse_to_tuple(train_support_t)

  u_features = sparse_to_tuple(u_features)
  v_features = sparse_to_tuple(v_features)
  assert u_features[2][1] == v_features[2][1], 'Number of features of users and items must be the same!'

  num_features = u_features[2][1]
  u_features_nonzero = u_features[1].shape[0]
  v_features_nonzero = v_features[1].shape[0]

  # Feed_dicts for validation and test set stay constant over different update steps
  train_feed_dict = construct_feed_dict(placeholders, u_features, v_features, u_features_nonzero,
                                        v_features_nonzero, train_support, train_support_t,
                                        train_labels, train_u_indices, train_v_indices, class_values, DO,
                                        train_u_features_side, train_v_features_side)
  # No dropout for validation and test runs
  val_feed_dict = construct_feed_dict(placeholders, u_features, v_features, u_features_nonzero,
                                      v_features_nonzero, val_support, val_support_t,
                                      val_labels, val_u_indices, val_v_indices, class_values, 0.,
                                      val_u_features_side, val_v_features_side)

  test_feed_dict = construct_feed_dict(placeholders, u_features, v_features, u_features_nonzero,
                                       v_features_nonzero, test_support, test_support_t,
                                       test_labels, test_u_indices, test_v_indices, class_values, 0.,
                                       test_u_features_side, test_v_features_side)


  # Collect all variables to be logged into summary
  merged_summary = tf.summary.merge_all()

  #sess = tf.Session()
  sess = tf.InteractiveSession()

  sess.run(tf.global_variables_initializer())

  if WRITESUMMARY:
      train_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/train', sess.graph)
      val_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/val')
  else:
      train_summary_writer = None
      val_summary_writer = None

  best_val_score = np.inf
  best_val_loss = np.inf
  best_epoch = 0
  wait = 0

  print('Training...')

  train_loss_values = []
  train_rmse_values = []
  val_loss_values = []
  val_rmse_values = []
  list_embeddings = []

  for epoch in range(NB_EPOCH):

      t = time.time()

      # Run single weight update
      # outs = sess.run([model.opt_op, model.loss, model.rmse], feed_dict=train_feed_dict)
      # with exponential moving averages
      outs = sess.run([model.training_op, model.loss, model.rmse], feed_dict=train_feed_dict)

  
      #print(len(model.embeddings))
        
        
      train_avg_loss = outs[1]
      train_rmse = outs[2]

      val_avg_loss, val_rmse = sess.run([model.loss, model.rmse], feed_dict=val_feed_dict)

      train_loss_values.append(train_avg_loss)
      train_rmse_values.append(train_rmse)
      val_loss_values.append(val_avg_loss)
      val_rmse_values.append(val_rmse)

      if VERBOSE:
          print("[*] Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_avg_loss),
                "train_rmse=", "{:.5f}".format(train_rmse),
                "val_loss=", "{:.5f}".format(val_avg_loss),
                "val_rmse=", "{:.5f}".format(val_rmse),
                "\t\ttime=", "{:.5f}".format(time.time() - t))

      if epoch==NB_EPOCH - 1:
          embedding_users = model.embeddings[0].eval(feed_dict=train_feed_dict)
          embedding_movies = model.embeddings[1].eval(feed_dict=train_feed_dict)

      if val_rmse < best_val_score:
          best_val_score = val_rmse
          best_epoch = epoch

      if epoch % 20 == 0 and WRITESUMMARY:
          # Train set summary
          summary = sess.run(merged_summary, feed_dict=train_feed_dict)
          train_summary_writer.add_summary(summary, epoch)
          train_summary_writer.flush()

          # Validation set summary
          summary = sess.run(merged_summary, feed_dict=val_feed_dict)
          val_summary_writer.add_summary(summary, epoch)
          val_summary_writer.flush()

      if epoch % 100 == 0 and epoch > 1000 and not TESTING and False:
          saver = tf.train.Saver()
          save_path = saver.save(sess, "tmp/%s_seed%d.ckpt" % (model.name, DATASEED), global_step=model.global_step)

          # load polyak averages
          variables_to_restore = model.variable_averages.variables_to_restore()
          saver = tf.train.Saver(variables_to_restore)
          saver.restore(sess, save_path)

          val_avg_loss, val_rmse = sess.run([model.loss, model.rmse], feed_dict=val_feed_dict)

          print('polyak val loss = ', val_avg_loss)
          print('polyak val rmse = ', val_rmse)

          # Load back normal variables
          saver = tf.train.Saver()
          saver.restore(sess, save_path)


  # store model including exponential moving averages
  saver = tf.train.Saver()
  save_path = saver.save(sess, "tmp/%s.ckpt" % model.name, global_step=model.global_step)


  if VERBOSE:
      print("\nOptimization Finished!")
      print('best validation score =', best_val_score, 'at iteration', best_epoch+1)


  if TESTING:
      test_avg_loss, test_rmse = sess.run([model.loss, model.rmse], feed_dict=test_feed_dict)
      print('test loss = ', test_avg_loss)
      print('test rmse = ', test_rmse)

      # restore with polyak averages of parameters
      variables_to_restore = model.variable_averages.variables_to_restore()
      saver = tf.train.Saver(variables_to_restore)
      saver.restore(sess, save_path)

      test_avg_loss, test_rmse = sess.run([model.loss, model.rmse], feed_dict=test_feed_dict)
      print('polyak test loss = ', test_avg_loss)
      print('polyak test rmse = ', test_rmse)

  else:
      # restore with polyak averages of parameters
      variables_to_restore = model.variable_averages.variables_to_restore()
      saver = tf.train.Saver(variables_to_restore)
      saver.restore(sess, save_path)

      val_avg_loss, val_rmse = sess.run([model.loss, model.rmse], feed_dict=val_feed_dict)
      print('polyak val loss = ', val_avg_loss)
      print('polyak val rmse = ', val_rmse)

  print('global seed = ', seed)

  sess.close()

  return embedding_users, embedding_movies, train_loss_values, train_rmse_values, val_loss_values, val_rmse_values
Exemplo n.º 26
0
def train_one_graph(adj, adj_orig, features_csr, num_node, k_num, model, opt,
                    placeholders, sess, new_learning_rate, feed_dict, epoch,
                    graph_index):
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]),
        shape=adj_orig.shape)  # delete self loop
    adj_orig.eliminate_zeros()
    adj_new = adj
    features = sparse_to_tuple(features_csr.tocoo())
    adj_norm, adj_norm_sparse = preprocess_graph(adj_new)
    adj_label = adj_new + sp.eye(adj.shape[0])
    adj_label = sparse_to_tuple(adj_label)
    ############
    # build models
    adj_clean = adj_orig.tocoo()
    adj_clean_tensor = tf.SparseTensor(indices=np.stack(
        [adj_clean.row, adj_clean.col], axis=-1),
                                       values=adj_clean.data,
                                       dense_shape=adj_clean.shape)
    ### initial clean and noised_mask
    clean_mask = np.array([1, 2, 3, 4, 5])
    noised_mask = np.array([6, 7, 8, 9, 10])
    noised_num = noised_mask.shape[0] / 2
    ##################################
    #
    feed_dict.update({placeholders["adj"]: adj_norm})
    feed_dict.update({placeholders["adj_orig"]: adj_label})
    feed_dict.update({placeholders["features"]: features})
    node_mask = np.ones([adj.shape[0], n_class])
    node_mask[num_node:, :] = 0
    feed_dict.update({placeholders['node_mask']: node_mask})
    feed_dict.update({placeholders['dropout']: FLAGS.dropout})
    model.k = k_num
    #####################################################
    t = time.time()
    ########
    if epoch > int(
            FLAGS.epochs / 2):  ## here we can control the manner of new model
        _ = sess.run([opt.G_min_op], feed_dict=feed_dict, options=run_options)

    else:
        _, x_tilde = sess.run([opt.D_min_op, model.realD_tilde],
                              feed_dict=feed_dict,
                              options=run_options)
        if epoch == int(FLAGS.epochs / 2):
            noised_indexes, clean_indexes = get_noised_indexes(
                x_tilde, adj_new, num_node)
            feed_dict.update({placeholders["noised_mask"]: noised_indexes})
            feed_dict.update({placeholders["clean_mask"]: clean_indexes})
            feed_dict.update(
                {placeholders["noised_num"]: len(noised_indexes) / 2})

    if epoch % 1 == 0 and graph_index == 0:
        if epoch > int(FLAGS.epochs / 2):
            print("This is the generation part")
        else:
            print("This is the cluster mask part")
        print("Epoch:", '%04d' % (epoch + 1), "time=",
              "{:.5f}".format(time.time() - t))
        G_loss, D_loss, new_learn_rate_value = sess.run(
            [opt.G_comm_loss, opt.D_loss, new_learning_rate],
            feed_dict=feed_dict,
            options=run_options)
        print("Step: %d,G: loss=%.7f ,L_u: loss= %.7f, LR=%.7f" %
              (epoch, G_loss, D_loss + 1, new_learn_rate_value))
        ##########################################
    return
Exemplo n.º 27
0
# create model
model = RecommenderGAE(placeholders,
                       input_dim=u_features.shape[1],
                       num_classes=NUMCLASSES,
                       num_support=num_support,
                       self_connections=SELFCONNECTIONS,
                       num_basis_functions=BASES,
                       hidden=HIDDEN,
                       num_users=num_users,
                       num_items=num_items,
                       accum=ACCUM,
                       learning_rate=LR,
                       logging=True)

# Convert sparse placeholders to tuples to construct feed_dict
test_support = sparse_to_tuple(test_support)
test_support_t = sparse_to_tuple(test_support_t)

val_support = sparse_to_tuple(val_support)
val_support_t = sparse_to_tuple(val_support_t)

u_features = sparse_to_tuple(u_features)
v_features = sparse_to_tuple(v_features)
assert u_features[2][1] == v_features[2][
    1], 'Number of features of users and items must be the same!'

num_features = u_features[2][1]
u_features_nonzero = u_features[1].shape[0]
v_features_nonzero = v_features[1].shape[0]

# Feed_dicts for validation and test set stay constant over different update steps
Exemplo n.º 28
0
adj_orig.eliminate_zeros()

adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
    adj)
adj = adj_train

adj_label = adj_train + sp.eye(adj_train.shape[0])

adj_norm = preprocess_graph(adj)
adj_norm_dense = scipy.sparse.coo_matrix(
    (adj_norm[1], (adj_norm[0][:, 0], adj_norm[0][:, 1])),
    shape=adj_norm[2]).toarray()

# Some preprocessing
num_nodes = adj.shape[0]
features = sparse_to_tuple(features.tocoo())
num_features = features[2][1]
features_nonzero = features[1].shape[0]
features_dense = scipy.sparse.coo_matrix(
    (features[1], (features[0][:, 0], features[0][:, 1])),
    shape=features[2]).toarray()

train_xs = features_dense

# In[3]:

# garaph cnn function


def weight_variable_glorot(input_dim, output_dim, name=""):
    """Create a weight variable with Glorot & Bengio (AISTATS 2010)
Exemplo n.º 29
0
# Store original adjacency matrix (without diagonal entries) for later
adj_orig = adj
adj_orig = adj_orig - sp.dia_matrix(
    (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
adj_orig.eliminate_zeros()

adj = adj_train

# Some preprocessing
adj_norm = preprocess_graph(adj)
features_mat = features.toarray()
attr_labels_list, dim_attr, features_rm_privacy = get_attr_list(
    FLAGS.dataset, labels, features_mat)

features_lil = sp.lil_matrix(features_rm_privacy)
features_tuple = sparse_to_tuple(features_lil.tocoo())
num_nodes = adj.shape[0]
features_sp = sparse_to_tuple(features_lil.tocoo())
num_features = features_sp[2][1]
features_nonzero = features_sp[1].shape[0]

pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = 1
adj_label = adj_train + sp.eye(adj_train.shape[0])
adj_label = sparse_to_tuple(adj_label)

# In[2]:

# Define placeholders

placeholders = get_placeholder(adj)
Exemplo n.º 30
0
    def mask_test_edges(self, edge_type, type_idx):
        edges_all, _, _ = preprocessing.sparse_to_tuple(
            self.adj_mats[edge_type][type_idx])
        num_test = max(50,
                       int(np.floor(edges_all.shape[0] * self.val_test_size)))
        num_val = max(50,
                      int(np.floor(edges_all.shape[0] * self.val_test_size)))

        all_edge_idx = list(range(edges_all.shape[0]))
        np.random.shuffle(all_edge_idx)

        val_edge_idx = all_edge_idx[:num_val]
        val_edges = edges_all[val_edge_idx]

        test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
        test_edges = edges_all[test_edge_idx]

        train_edges = np.delete(edges_all,
                                np.hstack([test_edge_idx, val_edge_idx]),
                                axis=0)

        test_edges_false = []
        while len(test_edges_false) < len(test_edges):
            if len(test_edges_false) % 1000 == 0:
                print("Constructing test edges=",
                      "%04d/%04d" % (len(test_edges_false), len(test_edges)))
            idx_i = np.random.randint(
                0, self.adj_mats[edge_type][type_idx].shape[0])
            idx_j = np.random.randint(
                0, self.adj_mats[edge_type][type_idx].shape[1])
            if self._ismember([idx_i, idx_j], edges_all):
                continue
            if test_edges_false:
                if self._ismember([idx_i, idx_j], test_edges_false):
                    continue
            test_edges_false.append([idx_i, idx_j])

        val_edges_false = []
        while len(val_edges_false) < len(val_edges):
            if len(val_edges_false) % 1000 == 0:
                print("Constructing val edges=",
                      "%04d/%04d" % (len(val_edges_false), len(val_edges)))
            idx_i = np.random.randint(
                0, self.adj_mats[edge_type][type_idx].shape[0])
            idx_j = np.random.randint(
                0, self.adj_mats[edge_type][type_idx].shape[1])
            if self._ismember([idx_i, idx_j], edges_all):
                continue
            if val_edges_false:
                if self._ismember([idx_i, idx_j], val_edges_false):
                    continue
            val_edges_false.append([idx_i, idx_j])

        # Re-build adj matrices
        data = np.ones(train_edges.shape[0])
        adj_train = sp.csr_matrix(
            (data, (train_edges[:, 0], train_edges[:, 1])),
            shape=self.adj_mats[edge_type][type_idx].shape)
        self.adj_train[edge_type][type_idx] = self.preprocess_graph(adj_train)

        self.train_edges[edge_type][type_idx] = train_edges
        self.val_edges[edge_type][type_idx] = val_edges
        self.val_edges_false[edge_type][type_idx] = np.array(val_edges_false)
        self.test_edges[edge_type][type_idx] = test_edges
        self.test_edges_false[edge_type][type_idx] = np.array(test_edges_false)