train_df = pandas.read_csv(train_fullpath,
                               sep=',',
                               na_values='NA',
                               low_memory=False)
    #for item in train_df.columns.values:
    #    pandas.to_numeric(train_df[item])
    X_train = train_df[attributes]
    y_train = train_df[target_key]
    train_datapreprocessing = DataPreprocessing(
        pandas.concat([X_train, y_train], axis=1), attributes, target_key)
    #train_datapreprocessing.data_summary()
    binary_transform_attrs = [
        'user_live_address', 'user_rela_name', 'user_relation',
        'user_rela_phone', 'user_high_edu', 'user_company_name'
    ]
    X_train = train_datapreprocessing.transform_x_to_binary(
        binary_transform_attrs)
    X_train = train_datapreprocessing.transform_x_dtype(binary_transform_attrs,
                                                        d_type=[int],
                                                        uniform_type=True)
    area_attrs = ['user_live_province', 'user_live_city']
    resource_dir = '../resources'
    X_train = train_datapreprocessing.china_area_number_mapping(
        area_attrs, resource_dir)
    X_train = train_datapreprocessing.transform_x_dtype(area_attrs,
                                                        d_type=[int],
                                                        uniform_type=True)
    X_train = train_datapreprocessing.x_dummies_and_fillna()
    #train_datapreprocessing.data_summary()

    Gini_DF = pandas.concat([X_train, y_train], axis=1)
    #gini_attrs = Gini_DF.axes[1]
    train_df = pandas.read_csv(train_fullpath,
                               sep=',',
                               na_values='NA',
                               low_memory=False)
    #for item in train_df.columns.values:
    #    pandas.to_numeric(train_df[item])
    X_train = train_df[attributes]
    y_train = train_df[target_key]
    train_datapreprocessing = DataPreprocessing(
        pandas.concat([X_train, y_train], axis=1), attributes, target_key)
    #train_datapreprocessing.data_summary()
    binary_transform_attrs = [
        'user_live_address', 'user_rela_name', 'user_relation',
        'user_rela_phone', 'user_high_edu', 'user_company_name'
    ]
    X_train = train_datapreprocessing.transform_x_to_binary(
        binary_transform_attrs)
    X_train = train_datapreprocessing.transform_x_dtype(binary_transform_attrs,
                                                        d_type=[int],
                                                        uniform_type=True)
    area_attrs = ['user_live_province', 'user_live_city']
    resource_dir = '../resources'
    X_train = train_datapreprocessing.china_area_number_mapping(
        area_attrs, resource_dir)
    X_train = train_datapreprocessing.transform_x_dtype(area_attrs,
                                                        d_type=[int],
                                                        uniform_type=True)
    X_train = train_datapreprocessing.x_dummies_and_fillna()
    #train_datapreprocessing.data_summary()

    #Gini_DF = pandas.concat([X_train,y_train],axis=1)
    ##gini_attrs = Gini_DF.axes[1]