def solution(): primes = [p for p in prime_numbers.primes(10000) if p > 1000] for p in primes: p_set = set(base10.perms(p)) & set(primes) p_list = sorted(list(x for x in p_set if x > p)) for q in p_list: if (2*q-p) in p_list: print(p,q,2*q-p) return 'done'
def solution(): primes = set(prime_numbers.primes(10000000)) count = 0 running_total = 0 i = 2 while count < 11 and i < 12: ndigit_candidates = candidates(i) for x in ndigit_candidates: if prime_numbers.is_prime(t_set(x)): print(x) count = count + 1 running_total = running_total + x i = i + 1 return running_total
import prime_numbers import itertools primes = set(prime_numbers.primes(2100000)) def number_of_consecutive_primes(a, b): """returns the number of consecutive primes produced by the polynomial n^2 + an + b""" n = 0 while (n ** 2 + a * n + b) in primes: n = n + 1 return n def solution(m=1000): """returns the maximum number of consecutive primes returned by a quadratic polynomial with x and number coefficents of modulus less than m""" n = 0 for (a, b) in itertools.product(range(-m + 1, m), primes.intersection(range(2, m))): x = number_of_consecutive_primes(a, b) if x > n: n = x max_a = a max_b = b print(max_a, max_b) return max_a * max_b