Exemplo n.º 1
0
def plot_faraday(data):
    """
    Plot the faraday rotation strength along a given line of sight.
    :param data: Reduced data object.
    """
    if settings.include_lambda:
        cbtitle=r"Faraday Rotation $\beta$ [rad]" +"\n$\lambda$ = {} cm".format(settings.faraday_lambda)
    else:
        cbtitle=r"Faraday RM [rad m$^{-2}$]"
    if data._ndim == 3:
        # Check on line of sight
        if settings.line_of_sight == "all":
            line_of_sight = ["x", "y", "z"]
        elif settings.line_of_sight == "x" or settings.line_of_sight == "y" or settings.line_of_sight == "z":
            line_of_sight = [settings.line_of_sight]
        else:
            sys.exit("Line of sight parameter is not known. Should be 'x', 'y', 'z' or 'all'."
                     "\nCurrent value: '{}'".format(settings.line_of_sight))

        for los in line_of_sight:
            faraday = get_faraday_strength(data, los)
            print("Plotting Faraday effect along {}".format(los))
            title = "Faraday - {}\n{}".format(los, print_tools.trim_filename(settings.filename))
            plotting.plot_surface(data=data, matrix_2d=faraday, line_of_sight=los, title=title,
                                  cmap=settings.cmap_faraday, logscale=settings.logscale_faraday, cblabel=cbtitle,
                                  cbformat=settings.cbar_format_faraday)

    else:
        faraday = get_faraday_strength(data, "x")
        print("Plotting Faraday effect for 2D dataset.")
        plotting.plot_surface(data=data, matrix_2d=faraday, line_of_sight="x",
                              title="Faraday\n{}".format(print_tools.trim_filename(settings.filename)),
                              cmap=settings.cmap_faraday, logscale=settings.logscale_faraday, cblabel=cbtitle,
                              cbformat=settings.cbar_format_faraday)
    return
Exemplo n.º 2
0
def check_to_remove_interpolated():
    """
    Checks and asks again if interpolated .npy files must be deleted. This can not be undone.
    Assumes that files have default naming convention defined in physics/ionization.py, eg. ion_ and f_
    """
    anim_seq = get_animation_sequence()
    f_npy_files = []
    ion_npy_files = []
    for filename in anim_seq:
        ion_npy_files.append("interpolated_files/ion_{}.npy".format(
            filename[:-4]))
        f_npy_files.append("interpolated_files/f_param_{}.npy".format(
            filename[:-4]))

    if settings.remove_npyfiles:
        print("Files >>{}.npy<< through >>{}.npy<< will be removed.".format(
            print_tools.trim_filename(ion_npy_files[0]),
            print_tools.trim_filename(ion_npy_files[-1])))
        print("Files >>{}.npy<< through >>{}.npy<< will be removed.".format(
            print_tools.trim_filename(f_npy_files[0]),
            print_tools.trim_filename(f_npy_files[-1])))
        usr_input = input("Continue? Y/N: ")
        if usr_input == "yes" or usr_input == "Y" or usr_input == "y":
            for npy_file in ion_npy_files:
                os.remove(npy_file)
            for npy_file in f_npy_files:
                os.remove(npy_file)
            print("Files removed.\n")
        else:
            print("Files not removed.\n")
    return
Exemplo n.º 3
0
def check_to_remove_png(pngfiles):
    """
    Checks and asks again if png files must be deleted. This can not be undone.
    :param pngfiles: (List) List containing the paths to the .png files.
    """
    if settings.remove_pngfiles:
        print("Files >>{}.png<< through >>{}.png<< will be removed.".format(
            print_tools.trim_filename(pngfiles[0]),
            print_tools.trim_filename(pngfiles[-1])))
        usr_input = input("Continue? Y/N: ")
        if usr_input == "yes" or usr_input == "Y" or usr_input == "y":
            for png_file in pngfiles:
                os.remove(png_file)
            print("Files removed.\n")
        else:
            print("Files not removed.\n")
    return
Exemplo n.º 4
0
def plot_h_alpha(data):
    """
    Plot the h-alpha line intensity over a given line of sight.
    :param data: Reduced data object
    """
    cb_title = "H-alpha intensity [cgs]"
    if data._ndim == 3:
        # Check on line of sight
        if settings.line_of_sight == "all":
            line_of_sight = ["x", "y", "z"]
        elif settings.line_of_sight == "x" or settings.line_of_sight == "y" or settings.line_of_sight == "z":
            line_of_sight = [settings.line_of_sight]
        else:
            sys.exit(
                "Line of sight parameter is not known. Should be 'x', 'y', 'z' or 'all'."
                "\nCurrent value: '{}'".format(settings.line_of_sight))

        for los in line_of_sight:
            intensity = get_intensity(data, los)
            print("Plotting H-alpha intensity along {}".format(los))
            title = "H-alpha - {}\n{}".format(
                los, print_tools.trim_filename(settings.filename))
            plotting.plot_surface(data=data,
                                  matrix_2d=intensity,
                                  line_of_sight=los,
                                  title=title,
                                  cmap=settings.cmap_halpha,
                                  logscale=settings.logscale_halpha,
                                  cblabel=cb_title,
                                  cbformat=settings.cbar_format_halpha)

    else:
        intensity = get_intensity(data, "x")
        print("Plotting H-alpha intensity for 2D dataset.")
        plotting.plot_surface(data=data,
                              matrix_2d=intensity,
                              line_of_sight="x",
                              title="H-alpha\n{}".format(
                                  print_tools.trim_filename(
                                      settings.filename)),
                              cmap=settings.cmap_halpha,
                              logscale=settings.logscale_halpha,
                              cblabel=cb_title,
                              cbformat=settings.cbar_format_halpha)
    return
Exemplo n.º 5
0
def save_regridded_data(regrid_data):
    """
    Saves the regridded data as a Numpy file.
    :param regrid_data: The regridded data, output from get_amr_data().
    """
    if settings.saveFiles:
        if not os.path.isdir("dat_files"):
            os.mkdir("dat_files")
        fn = 'dat_files/' + print_tools.trim_filename(
            settings.filename) + "_regridded_dat"
        np.save(fn, regrid_data)
        print("Regridded data saved to %s.npy" % fn)
    return
Exemplo n.º 6
0
def create_gif(images, duration=None):
    """
    Creates a .gif file from a given list of image paths.
    :param images: Sorted list containing the filepaths to the desired images.
    :param duration: Duration of each frame, in seconds.
    """
    if duration is None:
        duration = settings.frame_duration

    imageArray = []
    print("\nGENERATING GIF FILE...")
    counter = 0
    for im in images:
        imageArray.append(imageio.imread(im))
        counter += 1
    print("Iterated over {} images".format(counter))
    gifname = "animations/gif_files/{}.gif".format(
        print_tools.trim_filename(images[0])[:-5])
    imageio.mimsave(gifname, imageArray, duration=duration)
    print(".gif file saved to {}".format(gifname))
    return
Exemplo n.º 7
0
def get_i_f(data, altitude=20000):
    """
    Returns the degree of ionization for each datapoint in the given input.
    :param data: Reduced data object.
    :param altitude: Altitude at which to evaluate (in km).
                     Default is 20000, otherwise rounded to nearest base 1e4 integer.
                     Type is double or integer
    :return: i | Degree of ionization at each data point of the input matrix.
                 Type is np.ndarray of dimension ndim.
             f | f-value at each data point of the input matrix,
                 multiplied by 1e16 (see table in paper).
                 Type is np.ndarray of dimension ndim.
    """
    #Perform altitude check
    if not altitude == 20000:
        altitude = _round_to_base(altitude, 10000)

    #Select ionization table
    if int(altitude) == 10000:
        i_table = ionization_10k
    elif int(altitude) == 20000:
        i_table = ionization_20k
    else:
        i_table = ionization_30k

    #Select f table
    if int(altitude) == 10000:
        f_table = f_10k
    elif int(altitude) == 20000:
        f_table = f_20k
    else:
        f_table = f_30k

    #Create bivariate spline approximation over rectangular mesh
    #Has to be done only once, then use it to evaluate (T, p) point
    spline_ion = RectBivariateSpline(T_table, pg_table, i_table)
    spline_f = RectBivariateSpline(T_table, pg_table, f_table)

    #Re-dimensionalize temperature and pressure
    temp = data.T * units.unit_temperature
    pg = data.p * units.unit_pressure

    # Prevent double loading during the same run
    if data.ion is not None and data.f_param is not None:
        return data.ion, data.f_param
    else:
        #See if data is already stored to disk:
        filen = print_tools.trim_filename(settings.filename)
        if os.path.isfile("interpolated_files/ion_" + filen +
                          ".npy") and os.path.isfile(
                              "interpolated_files/f_param_" + filen + ".npy"):
            print("Interpolated data already exists -- loading files.")
            print("    Loading Numpy files...")
            ion = np.load("interpolated_files/ion_" + filen + ".npy")
            f = np.load("interpolated_files/f_param_" + filen + ".npy")
            print("    Done.")
            data.ion = ion
            data.f_param = f * 1e16
            return ion, f * 1e16

    #Create matrix of same size of input
    ion = np.zeros_like(temp)
    f = np.zeros_like(temp)

    #Fast iteration over array elements (calls the C array operator API)
    it = np.nditer(temp, flags=['multi_index'])

    print("Interpolating matrix for ionization and f.")

    if data._ndim == 2:
        tot_points = len(data.T[0, :])
    else:
        tot_points = len(data.T[0, 0, :])

    ctr = 0
    while not it.finished:
        #Get current index of iterator, Type = Tuple
        idx = it.multi_index

        #Get temperature and pressure at current index
        t_i = temp[idx]
        p_i = pg[idx]

        #Interpolate ionization degree, save to current index
        ion[idx] = spline_ion.ev(t_i, p_i)
        #Interpolate f, save to current index
        f[idx] = spline_f.ev(t_i, p_i)

        #Advance iterator
        ctr += 1
        #Print out progress
        if ctr % 250 == 0:
            print_tools.progress(idx[-1], tot_points, '-- interpolating...')
        it.iternext()
    print_tools.progress(tot_points, tot_points, '-- completed.')
    print("\n")

    # save Numpy arrays for easy acces later on
    if settings.saveFiles:
        np.save("interpolated_files/ion_" + filen, ion)
        np.save("interpolated_files/f_param_" + filen, f)
        print("Interpolated arrays saved to")
        print("    interpolated_files/ion_" + filen + ".npy")
        print("    interpolated_files/f_param_" + filen + ".npy")

    data.ion = ion
    data.f_param = f * 1e16

    # Parameter f is tabulated in units of 10^16 cm-3
    return ion, f * 1e16
Exemplo n.º 8
0
    def __init__(self, file):
        """
        Initializes Class instance.
        @param file: .dat file, opened in binary mode.
        """
        print("Reading %s" % settings.filename)
        hdr = dat_reader.get_header(file)

        # Obtain raw data
        try:
            # Mesh is uniformely refined
            raw_data = dat_reader.get_uniform_data(file)
        except IOError:
            print(
                "    Data is not uniformely refined, performing regridding to finest level"
            )
            # Check if data already regridded and saved:
            fn = "dat_files/" + print_tools.trim_filename(
                settings.filename) + "_regridded_dat.npy"
            if os.path.isfile(fn):
                print("    Regridded data already exists -- loading files.")
                raw_data = np.load(fn)
            else:
                # Data not found, initiate regridding
                if settings.multiple_procs:
                    print(
                        "    Regridding data using parallelization, number of procs = %s"
                        % settings.nb_of_procs)
                    raw_data = dat_reader.get_amr_data_multiprocessing(file)
                else:
                    raw_data = dat_reader.get_amr_data(file)

                print("    Regridding done.")
        print("Processing data...")

        self._version = hdr["version"]
        self._nw = hdr["nw"]
        self._ndir = hdr["ndir"]
        self._ndim = hdr["ndim"]
        self._levmax = hdr["levmax"]
        self._nleafs = hdr["nleafs"]
        self._it = hdr["it"]
        self._time = hdr["time"]
        self._xmin = hdr["xmin"][0]
        self._xmax = hdr["xmax"][0]

        if self._ndim >= 2:
            self._ymin = hdr["xmin"][1]
            self._ymax = hdr["xmax"][1]

        if self._ndim == 3:
            self._zmin = hdr["xmin"][2]
            self._zmax = hdr["xmax"][2]

        self._wnames = hdr["w_names"]
        self._physics_type = hdr["physics_type"]
        if self._physics_type == "hd":
            settings.plot_Blines = False
        self._gamma = hdr["gamma"]

        #Initialize primitive and conservative variables.
        #In essence not needed, but done to flag usage before initialization.
        self.rho = None
        self.momx = None
        self.momy = None
        self.momz = None
        self.e = None
        self.b1 = None
        self.b2 = None
        self.b3 = None
        self.p = None
        self.v1 = None
        self.v2 = None
        self.v3 = None
        self.T = None

        #Ionization degree etc, prevent double loading.
        self.ion = None
        self.fparam = None

        #Define conservative variables
        self._setConservativeVariables(raw_data)
        #Calculate primitive variables
        self._setPrimitiveVariables()
        #Calculate box sizes
        self._setupUniformGrid()

        print("    Processing done.\n")
Exemplo n.º 9
0
def plot_surface(data,
                 matrix_2d,
                 line_of_sight,
                 title=None,
                 xlabel=None,
                 ylabel=None,
                 cblabel=None):
    """
    Creates a surface plot of the integrated data.
    @param data: Reduced data object.
    @param matrix_2d: Integrated matrix along the line of sight.
                      Type is np.ndarray of dimension 2
    @param line_of_sight: (String) Line of sight corresponding to matrix_2d.
                          Can be 'x', 'y' or 'z', default = 'x'.
    @param title: (Optional, String) Title for the figure.
    @param xlabel: (Optional, String) Label for horizontal axis.
    @param ylabel: (Optional, String) Label for vertical axis.
    @param cblabel: (Optional, String) Label for the color bar.
    @note: - X integration: visual is from outside axis to origin, z is upwards, y is to the right
           - Y integration: visual is from origin to outside axis, z is upwards, x is to the right
           - Z integration: visual is from outside axis to origin, y is upwards, x is to the right
    """
    hori_ax, vert_ax = get_arrays(data, line_of_sight)
    bounds = [
        np.min(hori_ax),
        np.max(hori_ax),
        np.min(vert_ax),
        np.max(vert_ax)
    ]

    # Create figure
    fig, ax = plt.subplots(1)
    if settings.logscale:
        im = plt.imshow(matrix_2d,
                        norm=mpl.colors.LogNorm(),
                        cmap=settings.cmap,
                        extent=bounds)
    else:
        im = plt.imshow(matrix_2d, cmap=settings.cmap, extent=bounds)
    im.set_interpolation("bilinear")
    colorb = fig.colorbar(im)

    #Labels
    if cblabel is not None:
        colorb.set_label(cblabel)
    else:
        colorb.set_label("Intensity [cgs]")
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    else:
        ax.set_xlabel("[%.0e cm]" % units.unit_length)
    if ylabel is not None:
        ax.set_ylabel(ylabel)
    else:
        ax.set_ylabel("[%.0e cm]" % units.unit_length)

    filename = print_tools.trim_filename(settings.filename)
    if title is not None:
        ax.set_title(title + "\n" + filename)
    else:
        ax.set_title(filename)

    #Bounds
    ax.set_xlim([bounds[0], bounds[1]])
    ax.set_ylim([bounds[2], bounds[3]])

    #Magnetic field lines
    if settings.plot_Blines:
        impose_fieldlines(data, line_of_sight, ax)

    return