ind_test = ind_split[fold] # np.sort(ind_shuffled[:N//10]) ind_train = np.concatenate(ind_split[np.arange(10) != fold]) x_train = x # [ind_train] # 90/10 train/test split x_test = x # [ind_test] y_train = y # [ind_train] y_test = y # [ind_test] N_batch = 5000 M = 5000 # z = np.linspace(701050, 737050, M) z = np.linspace(x[0], x[-1], M) prior_1 = priors.Matern52(variance=2., lengthscale=5.5e4) prior_2 = priors.QuasiPeriodicMatern32(variance=1., lengthscale_periodic=2., period=365., lengthscale_matern=1.5e4) prior_3 = priors.QuasiPeriodicMatern32(variance=1., lengthscale_periodic=2., period=7., lengthscale_matern=30*365.) prior = priors.Sum([prior_1, prior_2, prior_3]) lik = likelihoods.Poisson() if method == 0: inf_method = approx_inf.EKS(damping=.5) elif method == 1: inf_method = approx_inf.UKS(damping=.5) elif method == 2: inf_method = approx_inf.GHKS(damping=.5) elif method == 3: inf_method = approx_inf.EP(power=1, intmethod='GH', damping=.5) elif method == 4: inf_method = approx_inf.EP(power=0.5, intmethod='GH', damping=.5) elif method == 5: inf_method = approx_inf.EP(power=0.01, intmethod='GH', damping=.5) elif method == 6:
x_test = x[ind_test] y_train = y[ind_train] y_test = y[ind_test] var_y = .1 var_f = 1. # GP variance len_f = 1. # GP lengthscale period = 1. # period of quasi-periodic component len_p = 5. # lengthscale of quasi-periodic component var_f_mat = 1. len_f_mat = 1. prior1 = priors.Matern32(variance=var_f_mat, lengthscale=len_f_mat) prior2 = priors.QuasiPeriodicMatern12(variance=var_f, lengthscale_periodic=len_p, period=period, lengthscale_matern=len_f) prior = priors.Sum([prior1, prior2]) lik = likelihoods.Gaussian(variance=var_y) if method == 0: inf_method = approx_inf.EKS(damping=.1) elif method == 1: inf_method = approx_inf.UKS(damping=.1) elif method == 2: inf_method = approx_inf.GHKS(damping=.1) elif method == 3: inf_method = approx_inf.EP(power=1, intmethod='GH', damping=.1) elif method == 4: inf_method = approx_inf.EP(power=0.5, intmethod='GH', damping=.1) elif method == 5: inf_method = approx_inf.EP(power=0.01, intmethod='GH', damping=.1)