Exemplo n.º 1
0
def test_extraction():
    try:
        print("Creating victim model")
        model = train_mnist_victim(gpus=0)

        def query_mnist(input_data):
            return get_target(model, input_data)

        print("Downloading EMNIST data")
        emnist_train, emnist_test = get_emnist_data()

        print("Launching model extraction attack")
        # A single GPU is assumed
        attack = ModelExtractionAttack(
            query=query_mnist,
            query_limit=100,
            victim_input_shape=(1, 28, 28, 1),
            victim_output_targets=10,
            substitute_input_shape=(1, 3, 28, 28),
            synthesizer="copycat",
            substitute_model_arch=ImagenetTransferLearning,
            substitute_input_size=1000,
            seed_data_train=emnist_train,
            seed_data_test=emnist_test,
            gpus=0,
        )
        print(attack)
    except Exception:
        pytest.fail("Unexpected Error")
Exemplo n.º 2
0
def test_extraction():
    """End-to-end test of a model extraction attack"""

    # Create a query function for a target PyTorch Lightning model
    model = train_four_layer_mnist_victim(gpus=torch.cuda.device_count())

    def query_mnist(input_data):
        # PrivacyRaven provides built-in query functions
        return get_target(model, input_data, (1, 28, 28, 1))

    # Obtain seed (or public) data to be used in extraction
    emnist_train, emnist_test = get_emnist_data()

    # Run a model extraction attack
    attack = ModelExtractionAttack(
        query=query_mnist,
        query_limit=100,
        victim_input_shape=(1, 28, 28, 1),  # EMNIST data point shape
        victim_output_targets=10,
        substitute_input_shape=(3, 1, 28, 28),
        synthesizer="copycat",
        substitute_model_arch=FourLayerClassifier,  # 28*28: image size
        substitute_input_size=784,
        seed_data_train=emnist_train,
        seed_data_test=emnist_test,
        gpus=0,
    )
Exemplo n.º 3
0
from privacyraven.models.four_layer import FourLayerClassifier
from pytorch_lightning.callbacks import Callback

# Trains a 4-layer fully connected neural network on MNIST data using all of the GPUs
# available to the user, or CPU if no GPUs are available (torch.cuda.device_count handles this).

model = train_four_layer_mnist_victim(gpus=torch.cuda.device_count())


# Create a query function for a target PyTorch Lightning model
def query_mnist(input_data):
    # PrivacyRaven provides built-in query functions
    return get_target(model, input_data, (1, 28, 28, 1))


emnist_train, emnist_test = get_emnist_data()

# Below is a user-defined callback that inherits from the Pytorch's Lightning Bolt Callback class.
# All it does is print "End of epoch" at the end of a training epoch.


class CustomCallback(Callback):
    def on_epoch_end(self, trainer, pl_module):
        print('End of epoch')


# Runs a Model Extraction Attack with the user-defined CustomCallback specified as an argument.
# Note that parentheses are needed while passing in the callback, since
# Pytorch Lightning bolt callbacks are classes that need to be instantiated.

attack = ModelExtractionAttack(query=query_mnist,