Exemplo n.º 1
0
def test_ones():
    """Tests ones"""

    # Scalar
    ones = ops.ones([1])
    assert isinstance(ones, tf.Tensor)
    assert ones.ndim == 1
    assert ones.shape[0] == 1
    assert ones.numpy() == 1.0

    # 1D
    ones = ops.ones([5])
    assert isinstance(ones, tf.Tensor)
    assert ones.ndim == 1
    assert ones.shape[0] == 5
    assert all(ones.numpy() == 1.0)

    # 2D
    ones = ops.ones([5, 4])
    assert isinstance(ones, tf.Tensor)
    assert ones.ndim == 2
    assert ones.shape[0] == 5
    assert ones.shape[1] == 4
    assert np.all(ones.numpy() == 1.0)

    # 3D
    ones = ops.ones([5, 4, 3])
    assert isinstance(ones, tf.Tensor)
    assert ones.ndim == 3
    assert ones.shape[0] == 5
    assert ones.shape[1] == 4
    assert ones.shape[2] == 3
    assert np.all(ones.numpy() == 1.0)
Exemplo n.º 2
0
    def __init__(self,
                 k: int = 2,
                 shape: Union[int, List[int]] = [],
                 posterior=Dirichlet,
                 prior=None,
                 transform=None,
                 initializer={'concentration': pos_xavier},
                 var_transform={'concentration': O.softplus},
                 name='DirichletParameter'):

        # Check type of k
        if not isinstance(k, int):
            raise TypeError('k must be an integer')
        if k < 2:
            raise ValueError('k must be >1')

        # Make shape a list
        if isinstance(shape, int):
            shape = [shape]

        # Create shape of underlying variable array
        shape = shape + [k]

        # Use a uniform prior
        if prior is None:
            prior = Dirichlet(O.ones(shape))

        # Initialize the parameter
        super().__init__(shape=shape,
                         posterior=posterior,
                         prior=prior,
                         transform=transform,
                         initializer=initializer,
                         var_transform=var_transform,
                         name=name)
Exemplo n.º 3
0
    def __init__(self,
                 k: int = 2,
                 shape: Union[int, List[int]] = [],
                 posterior=Categorical,
                 prior=None,
                 transform=None,
                 initializer={'probs': xavier},
                 var_transform={'probs': O.additive_logistic_transform},
                 name='CategoricalParameter'):

        # Check type of k
        if not isinstance(k, int):
            raise TypeError('k must be an integer')
        if k < 2:
            raise ValueError('k must be >1')

        # Make shape a list
        if isinstance(shape, int):
            shape = [shape]

        # Use a uniform prior
        if prior is None:
            prior = Categorical(O.ones(shape) / float(k))

        # Create shape of underlying variable array
        shape = shape + [k - 1]

        # Initialize the parameter
        super().__init__(shape=shape,
                         posterior=posterior,
                         prior=prior,
                         transform=transform,
                         initializer=initializer,
                         var_transform=var_transform,
                         name=name)

        # shape should correspond to the sample shape
        self.shape = shape
Exemplo n.º 4
0
 def init(shape):
     return val * O.ones(shape)