Exemplo n.º 1
0
def test_implementation():
    tf.reset_default_graph()
    tests.test_nn_image_inputs(neural_net_image_input)
    tests.test_nn_label_inputs(neural_net_label_input)
    tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)
    tests.test_con_pool(conv2d_maxpool)
    tests.test_flatten(flatten)
    tests.test_fully_conn(fully_conn)
    tests.test_output(output)

    build_cnn()

    tests.test_conv_net(conv_net)
    tests.test_train_nn(train_neural_network)
def run_tests():

    import problem_unittests as t

    t.test_folder_path(cifar10_dataset_folder_path)
    t.test_normalize(normalize)
    t.test_one_hot_encode(one_hot_encode)
    t.test_nn_image_inputs(neural_net_image_input)
    t.test_nn_label_inputs(neural_net_label_input)
    t.test_nn_keep_prob_inputs(neural_net_keep_prob_input)
    t.test_con_pool(conv2conv2d_maxpool)
    t.test_flatten(flatten)
    t.test_fully_conn(fully_conn)
    t.test_output(output)
    t.test_conv_net(conv_net)
    t.test_train_nn(train_neural_network)
Exemplo n.º 3
0
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function

    fc_layer = tf.layers.dense(x_tensor, num_outputs, activation=tf.nn.relu)
    return fc_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


# ### Output Layer
# Implement the `output` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*).
#
# Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.
#
# **Note:** Activation, softmax, or cross entropy should **not** be applied to this.

# In[ ]:



def output(x_tensor, num_outputs):
    """
    # TODO: Implement Function
    input_size = x_tensor.get_shape().as_list()[1]
    output_size = num_outputs 
    
    weights = tf.Variable(tf.truncated_normal([input_size, output_size], mean = 0.0, stddev = 1.0 / input_size))
    biases = tf.Variable(tf.zeros(num_outputs))
    fc_out = tf.add(tf.matmul(x_tensor, weights), biases)
    fc_out = tf.nn.relu(fc_out)
    
    return fc_out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


# ### Output Layer
# Implement the `output` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.
# 
# **Note:** Activation, softmax, or cross entropy should **not** be applied to this.

# In[11]:


def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
 def runFullyConvLayerTests(self):
     tests.test_fully_conn(fully_conn)
     print("Model FullyConvLayerTests Ran Successfully")