Exemplo n.º 1
0
    def __init__(self,
                 source,
                 examples,
                 max_iter=10000,
                 min_improv=1e-10,
                 verbose=0,
                 knowledge=None,
                 leakprob=None,
                 propagate_evidence=True,
                 normalize=False,
                 **extra):
        """
        :param source: filename of file containing input model
        :type source: str
        :param examples: list of observed terms / value
        :type examples: list[tuple(Term, bool)]
        :param max_iter: maximum number of iterations to run
        :type max_iter: int
        :param min_improv: minimum improvement in log-likelihood for convergence detection
        :type min_improv: float
        :param verbose: verbosity level
        :type verbose: int
        :param knowledge: class to use for knowledge compilation
        :type knowledge: class
        :param leakprob: Add all true evidence atoms with the given probability
                         to avoid 'inconsistent evidence' errors. This also
                         allows to learn a program without constants and
                         retrieve the constants from the evidence file.
                         (default: None)
        :type leakprob: float or None
        :param extra: catch all for additional parameters (not used)
        """
        SemiringProbability.__init__(self)
        LogicProgram.__init__(self)
        self.source = source

        # The names of the atom for which we want to learn weights.
        self.names = []

        # The weights to learn.
        # The initial weights are of type 'float'.
        # When necessary they are replaced by a dictionary [t(arg1, arg2, ...) -> float]
        #  for weights of form t(SV, arg1, arg2, ...).
        self._weights = []

        self.examples = examples
        self.leakprob = leakprob
        self.leakprobatoms = None
        self.propagate_evidence = propagate_evidence
        self._compiled_examples = None

        self.max_iter = max_iter
        self.min_improv = min_improv
        self.verbose = verbose
        self.iteration = 0

        if knowledge is None:
            knowledge = get_evaluatable()
        self.knowledge = knowledge

        self.output_mode = False
        self.extra = extra

        self._enable_normalize = normalize
        self._adatoms = []
Exemplo n.º 2
0
 def __init__(self, weights):
     SemiringProbability.__init__(self)
     self._weights = weights