Exemplo n.º 1
0
def annual_population(in_df, out_df, o_path):
    in_df = calls_cleanup(in_df)
    out_df = calls_cleanup(out_df)
    df = in_df.append(out_df, sort=False)
    df = df.groupby(['MOUHAFAZA', 'YEAR', 'KAZA'],
                    as_index=False).agg({'NB_CALLS': 'sum'})
    df = df.apply(lambda row: get_population(df, row), axis=1)
    save(df, o_path)
Exemplo n.º 2
0
def structure(df):
    df2=pd.DataFrame()
    for year in np.unique(np.array(df['YEAR'])):
        sub=df[df['YEAR'] == year]
        for age in np.unique(np.array(sub['AGE_GROUP'])):
            m=-1*sub[(sub['YEAR']==year)&(sub['AGE_GROUP']==age)&(sub['GENDER']=='M')]['NB_CALLS'].values.item()
            f=sub[(sub['YEAR']==year)&(sub['AGE_GROUP']==age)&(sub['GENDER']=='F')]['NB_CALLS'].values.item()
            df2=df2.append({'YEAR':year,'AGE_GROUP':age,'MALE':m,'FEMALE':f},ignore_index=True)        
    save(df2,'pop_pyramid.csv')
Exemplo n.º 3
0
def sites_per_kaza(df, o_path):
    o = pd.DataFrame()
    kazas = np.unique(df['KAZA'])
    for year in years:
        for kaza in kazas:
            sub = df[(df['KAZA'] == kaza) & (df['YEAR'] == year)]
            o = o.append({
                'YEAR': year,
                'KAZA': kaza,
                'NB_SITES': len(sub)
            },
                         ignore_index=True)
    save(o, o)
Exemplo n.º 4
0
def mb(df, o_path):
    df = df.groupby(['MOUHAFAZA', 'YEAR', 'KAZA'], as_index=False).agg({
        'UPLINK_MB':
        'sum',
        'DOWNLINK_MB':
        'sum',
        'TOTAL_MB':
        'sum',
    })
    df['ALFA_UP/DOWN'] = df['ALFA_UPLINK_MB'].astype(
        float) / df['ALFA_DOWNLINK_MB'].astype(float)
    df['ALFA_UP/TOTAL'] = df['ALFA_UPLINK_MB'].astype(
        float) / df['ALFA_TOTAL_MB'].astype(float)
    df['ALFA_DOWN/TOTAL'] = df['ALFA_DOWNLINK_MB'].astype(
        float) / df['ALFA_TOTAL_MB'].astype(float)
    save(df, o_path)
Exemplo n.º 5
0
def indicators():
    df = read_output('daily.csv')
    df2 = pd.DataFrame()
    for year in np.unique(df['YEAR']):
        sub = df[df['YEAR'] == year]
        ramadan = sub[sub['RAMADAN']]['NB_CALLS'].mean() / sub[
            sub['RAMADAN'] == False]['NB_CALLS'].mean()
        weekend = sub[sub['TYPE'] == 'WEEKEND']['NB_CALLS'].mean() / sub[
            sub['TYPE'] == 'WEEKDAY']['NB_CALLS'].mean()
        holiday = sub[sub['HOLIDAY']]['NB_CALLS'].mean() / sub[
            sub['HOLIDAY'] == False]['NB_CALLS'].mean()
        df2 = df2.append(
            {
                'YEAR': year,
                'RAMADAN_RATIO': ramadan,
                'HOLIDAY_RATIO': holiday,
                'WEEKEND_RATIO': weekend
            },
            ignore_index=True)

    save(df2, 'refugee_activity.csv')
Exemplo n.º 6
0
def economics(in_df, out_df, o_path):
    in_to_out = pd.DataFrame()
    for _, row in in_df.iterrows():
        dic = {}
        dic['YEAR'] = row['YEAR']
        dic['MOUHAFAZA'] = row['MOUHAFAZA']
        dic['KAZA'] = row['KAZA']
        out = out_df[(out_df['KAZA'] == row['KAZA'])
                     & (out_df['YEAR'] == row['YEAR'])]
        dic['NB_RATIO'] = out['NB_CALLS'].values.item() / row['NB_CALLS']
        dic['DURATION_RATIO'] = out['DURATION_IN_SEC'].values.item(
        ) / row['DURATION_IN_SEC']
        dic['AVG_IN_DURATION_SEC'] = row['DURATION_IN_SEC'] / row['NB_CALLS']
        dic['AVG_IN_DURATION_MIN'] = row['DURATION_IN_MIN'] / row['NB_CALLS']
        dic['AVG_OUT_DURATION_SEC'] = out['DURATION_IN_SEC'].values.item(
        ) / out['NB_CALLS'].values.item()
        dic['AVG_OUT_DURATION_MIN'] = out['DURATION_IN_MIN'].values.item(
        ) / out['NB_CALLS'].values.item()

        in_to_out = in_to_out.append(dic, ignore_index=True)

    save(in_to_out, o_path)
Exemplo n.º 7
0
def set_weekday():
    df = read('daily.csv')
    df = df.apply(lambda row: weekday(row), axis=1)
    save(df, 'daily.csv')
Exemplo n.º 8
0
def annual_mobility():
    mob = read_output('population.csv')
    mob = mob.apply(lambda row: get_variation(mob, row), axis=1)
    save(mob, 'mobility.csv')