Exemplo n.º 1
0
# flux_ident_3_data_combination(arranged_data_df, flux_ids=[3], flux_choice=[1],
#                               ident_fun_choice=ident_fun_choice, file_name=storage_file_name)

# retrieve identifiability data from file and process information
ident_index_label = ['sample_name', 'data_set_id']
# retrieve identifiability info from file
ident_df = retrieve_experimental_data_from_file(storage_file_name,
                                                ident_index_label)
all_parameter_info = process_ident(ident_df, arranged_data_df)

# run dynamic simulations to obtain ss data based on estimated parameter values
# get info from data sets that identify all 3 parameters
validation_file_name = os.path.join(
    os.getcwd(), 'validate/ident_validate_v3_root_1_mwc_data')
from process_ident_data import get_parameter_value
validation_info = get_parameter_value(all_parameter_info, ident_df)
# get default parameter values
default_parameter_values = true_parameter_values()

# initial value used to generate experimental data
# from validate_estimation import validate_model
# import numpy as np
# y0 = np.array([5, 1, 1])
# # integrator options
# cvode_options = {'iter': 'Newton', 'discr': 'Adams', 'atol': 1e-10, 'rtol': 1e-10, 'time_points': 200,
#                  'display_progress': False, 'verbosity': 50}
# validate_model(y0, cvode_options, default_parameter_values, validation_info,
#                save_file_name=validation_file_name,
#                ss=1, dyn=0, noise=0, kinetics=2)

# retrieve validation info from file
    flux_choice=[3],
    exp_df=arranged_data_df,
    file_name=storage_file_name)

index_labels = ['sample_name', 'data_set_id']
numerical_ident_df = retrieve_experimental_data_from_file(
    data_file_name=storage_file_name, multi_index_label=index_labels)
all_parameter_info = process_opt_solution(numerical_ident_df, arranged_data_df,
                                          [], [], [], [])

# get default parameter values
default_parameter_values = true_parameter_values()

# extract all parameter values
from process_ident_data import get_parameter_value
validation_info = get_parameter_value(all_parameter_info, numerical_ident_df)
# initial value used to generate experimental data
import numpy as np
y0 = np.array([5, 1, 1])
# integrator options
cvode_options = {
    'iter': 'Newton',
    'discr': 'Adams',
    'atol': 1e-10,
    'rtol': 1e-10,
    'time_points': 200,
    'display_progress': False,
    'verbosity': 50
}
# validate all parameter values
validation_file_name = os.path.join(