Exemplo n.º 1
0
 def core_solve(self,
                spf,
                dpf,
                phase_error=0.1,
                amplitude_error=0.0,
                leakage=0.0,
                phase_only=True,
                niter=200,
                crosspol=False,
                residual_tol=1e-6,
                f=None,
                vnchan=3):
     if f is None:
         f = [100.0, 50.0, -10.0, 40.0]
     self.actualSetup(spf, dpf, f=f, vnchan=vnchan)
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt,
                             phase_error=phase_error,
                             amplitude_error=amplitude_error,
                             leakage=leakage)
     original = copy_visibility(self.vis)
     vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis,
                             original,
                             phase_only=phase_only,
                             niter=niter,
                             crosspol=crosspol,
                             tol=1e-6)
     vis = apply_gaintable(vis, gtsol, inverse=True)
     residual = numpy.max(gtsol.residual)
     assert residual < residual_tol, "%s %s Max residual = %s" % (spf, dpf,
                                                                  residual)
     log.debug(qa_gaintable(gt))
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
 def test_apply_gaintable_and_inverse_both(self):
     for spf, dpf in[('stokesI', 'stokesI'), ('stokesIQUV', 'linear'), ('stokesIQUV', 'circular')]:
         self.actualSetup(spf, dpf)
         gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
         log.info("Created gain table: %s" % (gaintable_summary(gt)))
         gt = simulate_gaintable(gt, phase_error=0.1, amplitude_error=0.1)
         original = copy_visibility(self.vis)
         vis = apply_gaintable(self.vis, gt)
         vis = apply_gaintable(self.vis, gt, inverse=True)
         error = numpy.max(numpy.abs(vis.vis - original.vis))
         assert error < 1e-12, "Error = %s" % (error)
def insert_unittest_errors(vt, seed=180555, amp_errors=None, phase_errors=None):
    """Simulate gain errors and apply
    
    :param vt:
    :param seed: Random number seed, set to big integer repeat values from run to run
    :param phase_errors: e.g. {'T': 1.0, 'G': 0.1, 'B': 0.01}
    :param amp_errors: e.g. {'T': 0.0, 'G': 0.01, 'B': 0.01}
    :return:
    """
    numpy.random.seed(seed)
    controls = create_calibration_controls()
    
    if amp_errors is None:
        amp_errors = {'T': 0.0, 'G': 0.01, 'B': 0.01}
    
    if phase_errors is None:
        phase_errors = {'T': 1.0, 'G': 0.1, 'B': 0.01}
    
    for c in "TGB":
        gaintable = \
            create_gaintable_from_blockvisibility(vt, timeslice=controls[c]['timeslice'])
        gaintable = simulate_gaintable(gaintable,
                                       timeslice=controls[c]['timeslice'],
                                       phase_only=controls[c]['phase_only'],
                                       crosspol=controls[c]['shape'] == 'matrix',
                                       phase_error=phase_errors[c], amplitude_error=amp_errors[c])
        vt = apply_gaintable(vt, gaintable, inverse=True, timeslice=controls[c]['timeslice'])
    
    return vt
 def test_apply_gaintable_null(self):
     for spf, dpf in[('stokesI', 'stokesI'), ('stokesIQUV', 'linear'), ('stokesIQUV', 'circular')]:
         self.actualSetup(spf, dpf)
         gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
         gt.data['gain']*=0.0
         original = copy_visibility(self.vis)
         vis = apply_gaintable(self.vis, gt, inverse=True)
         error = numpy.max(numpy.abs(vis.vis[:,0,1,...] - original.vis[:,0,1,...]))
         assert error < 1e-12, "Error = %s" % (error)
def create_blockvisibility_iterator(config: Configuration, times: numpy.array, frequency: numpy.array,
                                    channel_bandwidth, phasecentre: SkyCoord, weight: float = 1,
                                    polarisation_frame=PolarisationFrame('stokesI'), integration_time=1.0,
                                    number_integrations=1, predict=predict_2d, model=None, components=None,
                                    phase_error=0.0, amplitude_error=0.0, sleep=0.0, **kwargs):
    """ Create a sequence of Visibilities and optionally predicting and coalescing

    This is useful mainly for performing large simulations. Do something like::
    
        vis_iter = create_blockvisibility_iterator(config, times, frequency, channel_bandwidth, phasecentre=phasecentre,
                                              weight=1.0, integration_time=30.0, number_integrations=3)

        for i, vis in enumerate(vis_iter):
        if i == 0:
            fullvis = vis
        else:
            fullvis = append_visibility(fullvis, vis)


    :param config: Configuration of antennas
    :param times: hour angles in radians
    :param frequency: frequencies (Hz] Shape [nchan]
    :param weight: weight of a single sample
    :param phasecentre: phasecentre of observation
    :param npol: Number of polarizations
    :param integration_time: Integration time ('auto' or value in s)
    :param number_integrations: Number of integrations to be created at each time.
    :param model: Model image to be inserted
    :param components: Components to be inserted
    :param sleep_time: Time to sleep between yields
    :return: Visibility

    """
    for time in times:
        actualtimes = time + numpy.arange(0, number_integrations) * integration_time * numpy.pi / 43200.0
        bvis = create_blockvisibility(config, actualtimes, frequency=frequency, phasecentre=phasecentre, weight=weight,
                                      polarisation_frame=polarisation_frame, integration_time=integration_time,
                                      channel_bandwidth=channel_bandwidth)
        
        if model is not None:
            vis = predict(bvis, model, **kwargs)
            bvis = convert_visibility_to_blockvisibility(vis)
        
        if components is not None:
            bvis = predict_skycomponent_visibility(bvis, components)
        
        # Add phase errors
        if phase_error > 0.0 or amplitude_error > 0.0:
            gt = create_gaintable_from_blockvisibility(bvis)
            gt = simulate_gaintable(gt=gt, phase_error=phase_error, amplitude_error=amplitude_error)
            bvis = apply_gaintable(bvis, gt)
        
        import time
        time.sleep(sleep)
        
        yield bvis
 def make_e(vis, calskymodel, evis_all):
     # Return the estep for a given skymodel
     evis = copy_visibility(vis)
     tvis = copy_visibility(vis, zero=True)
     tvis = predict_skymodel_visibility(tvis, calskymodel[0])
     tvis = apply_gaintable(tvis, calskymodel[1])
     # E step is the data model for a window plus the difference between the observed data_models
     # and the summed data models or, put another way, its the observed data minus the
     # summed visibility for all other windows
     evis.data['vis'][...] = tvis.data['vis'][...] + vis.data['vis'][...] - evis_all.data['vis'][...]
     return evis
 def test_create_gaintable_from_visibility(self):
     for spf, dpf in[('stokesI', 'stokesI'), ('stokesIQUV', 'linear'), ('stokesIQUV', 'circular')]:
         self.actualSetup(spf, dpf)
         gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
         log.info("Created gain table: %s" % (gaintable_summary(gt)))
         gt = simulate_gaintable(gt, phase_error=1.0)
         original = copy_visibility(self.vis)
         vis = apply_gaintable(self.vis, gt)
         assert numpy.max(numpy.abs(original.vis)) > 0.0
         assert numpy.max(numpy.abs(vis.vis)) > 0.0
         assert numpy.max(numpy.abs(vis.vis - original.vis)) > 0.0
 def test_solve_gaintable_scalar_bandpass(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0], vnchan=128)
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.01, smooth_channels=8)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis, original, phase_only=False, niter=200)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
 def test_solve_gaintable_scalar_timeslice(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0], ntimes=10)
     gt = create_gaintable_from_blockvisibility(self.vis, timeslice=120.0)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis, original, phase_only=True, niter=200)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
 def test_solve_gaintable_scalar_normalise(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=0.0, amplitude_error=0.1)
     gt.data['gain'] *= 2.0
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis, original, phase_only=False, niter=200, normalise_gains=True)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
def modelpartition_list_expectation_step(vis: BlockVisibility, evis_all: BlockVisibility, modelpartition, **kwargs):
    """Calculates E step in equation A12

    This is the data model for this window plus the difference between observed data and summed data models

    :param evis_all: Sum data models
    :param csm: csm element being fit
    :param kwargs:
    :return: Data model (i.e. visibility) for this csm
    """
    evis = copy_visibility(evis_all)
    tvis = copy_visibility(vis, zero=True)
    tvis = predict_skymodel_visibility(tvis, modelpartition[0], **kwargs)
    tvis = apply_gaintable(tvis, modelpartition[1])
    evis.data['vis'][...] = tvis.data['vis'][...] + vis.data['vis'][...] - evis_all.data['vis'][...]
    return evis
def calskymodel_expectation_all(vis: BlockVisibility, calskymodels, **kwargs):
    """Calculates E step in equation A12

    This is the sum of the data models over all skymodel

    :param vis: Visibility
    :param csm: List of (skymodel, gaintable) tuples
    :param kwargs:
    :return: Sum of data models (i.e. a visibility)
    """
    evis = copy_visibility(vis, zero=True)
    tvis = copy_visibility(vis, zero=True)
    for csm in calskymodels:
        tvis.data['vis'][...] = 0.0
        tvis = predict_skymodel_visibility(tvis, csm[0], **kwargs)
        tvis = apply_gaintable(tvis, csm[1])
        evis.data['vis'][...] += tvis.data['vis'][...]
    return evis
Exemplo n.º 13
0
def calibrate_list_serial_workflow(vis_list,
                                   model_vislist,
                                   calibration_context='TG',
                                   global_solution=True,
                                   **kwargs):
    """ Create a set of components for (optionally global) calibration of a list of visibilities

    If global solution is true then visibilities are gathered to a single visibility data set which is then
    self-calibrated. The resulting gaintable is then effectively scattered out for application to each visibility
    set. If global solution is false then the solutions are performed locally.

    :param vis_list:
    :param model_vislist:
    :param calibration_context: String giving terms to be calibrated e.g. 'TGB'
    :param global_solution: Solve for global gains
    :param kwargs: Parameters for functions in components
    :return:
    """
    def solve_and_apply(vis, modelvis=None):
        return calibrate_function(vis,
                                  modelvis,
                                  calibration_context=calibration_context,
                                  **kwargs)[0]

    if global_solution:
        point_vislist = [
            divide_visibility(vis_list[i], model_vislist[i])
            for i, _ in enumerate(vis_list)
        ]
        global_point_vis_list = visibility_gather_channel(point_vislist)
        global_point_vis_list = integrate_visibility_by_channel(
            global_point_vis_list)
        # This is a global solution so we only compute one gain table
        _, gt_list = solve_and_apply(global_point_vis_list)
        return [apply_gaintable(v, gt_list, inverse=True) for v in vis_list]
    else:

        return [
            solve_and_apply(vis_list[i], model_vislist[i])
            for i, v in enumerate(vis_list)
        ]
    def ingest_visibility(self,
                          freq=None,
                          chan_width=None,
                          times=None,
                          add_errors=False,
                          block=True,
                          bandpass=False):
        if freq is None:
            freq = [1e8]
        if chan_width is None:
            chan_width = [1e6]
        if times is None:
            times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5)

        lowcore = create_named_configuration('LOWBD2', rmax=750.0)
        frequency = numpy.array(freq)
        channel_bandwidth = numpy.array(chan_width)

        phasecentre = SkyCoord(ra=+180.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')
        if block:
            vt = create_blockvisibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        else:
            vt = create_visibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        cellsize = 0.001
        model = create_image_from_visibility(
            vt,
            npixel=self.npixel,
            cellsize=cellsize,
            npol=1,
            frequency=frequency,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"))
        nchan = len(self.frequency)
        flux = numpy.array(nchan * [[100.0]])
        facets = 4

        rpix = model.wcs.wcs.crpix - 1.0
        spacing_pixels = self.npixel // facets
        centers = [-1.5, -0.5, 0.5, 1.5]
        comps = list()
        for iy in centers:
            for ix in centers:
                p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                    int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
                comp = create_skycomponent(
                    direction=sc,
                    flux=flux,
                    frequency=frequency,
                    polarisation_frame=PolarisationFrame("stokesI"))
                comps.append(comp)
        if block:
            predict_skycomponent_visibility(vt, comps)
        else:
            predict_skycomponent_visibility(vt, comps)
        insert_skycomponent(model, comps)
        self.comps = comps
        self.model = copy_image(model)
        self.empty_model = create_empty_image_like(model)
        export_image_to_fits(
            model, '%s/test_pipeline_functions_model.fits' % (self.dir))

        if add_errors:
            # These will be the same for all calls
            numpy.random.seed(180555)
            gt = create_gaintable_from_blockvisibility(vt)
            gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0)
            vt = apply_gaintable(vt, gt)

            if bandpass:
                bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5)
                bgt = simulate_gaintable(bgt,
                                         phase_error=0.01,
                                         amplitude_error=0.01,
                                         smooth_channels=4)
                vt = apply_gaintable(vt, bgt)

        return vt
    def actualSetup(self,
                    vnchan=1,
                    doiso=True,
                    ntimes=5,
                    flux_limit=2.0,
                    zerow=True,
                    fixed=False):

        nfreqwin = vnchan
        rmax = 300.0
        npixel = 512
        cellsize = 0.001
        frequency = numpy.linspace(0.8e8, 1.2e8, nfreqwin)
        if nfreqwin > 1:
            channel_bandwidth = numpy.array(nfreqwin *
                                            [frequency[1] - frequency[0]])
        else:
            channel_bandwidth = [0.4e8]
        times = numpy.linspace(-numpy.pi / 3.0, numpy.pi / 3.0, ntimes)

        phasecentre = SkyCoord(ra=-60.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')

        lowcore = create_named_configuration('LOWBD2', rmax=rmax)

        block_vis = create_blockvisibility(
            lowcore,
            times,
            frequency=frequency,
            channel_bandwidth=channel_bandwidth,
            weight=1.0,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"),
            zerow=zerow)

        block_vis.data['uvw'][..., 2] = 0.0
        self.beam = create_image_from_visibility(
            block_vis,
            npixel=npixel,
            frequency=[numpy.average(frequency)],
            nchan=nfreqwin,
            channel_bandwidth=[numpy.sum(channel_bandwidth)],
            cellsize=cellsize,
            phasecentre=phasecentre)

        self.components = create_low_test_skycomponents_from_gleam(
            flux_limit=flux_limit,
            phasecentre=phasecentre,
            frequency=frequency,
            polarisation_frame=PolarisationFrame('stokesI'),
            radius=npixel * cellsize)
        self.beam = create_low_test_beam(self.beam)
        self.components = apply_beam_to_skycomponent(self.components,
                                                     self.beam,
                                                     flux_limit=flux_limit)

        self.vis = copy_visibility(block_vis, zero=True)
        gt = create_gaintable_from_blockvisibility(block_vis, timeslice='auto')
        for i, sc in enumerate(self.components):
            if sc.flux[0, 0] > 10:
                sc.flux[...] /= 10.0
            component_vis = copy_visibility(block_vis, zero=True)
            gt = simulate_gaintable(gt,
                                    amplitude_error=0.0,
                                    phase_error=0.1,
                                    seed=None)
            component_vis = predict_skycomponent_visibility(component_vis, sc)
            component_vis = apply_gaintable(component_vis, gt)
            self.vis.data['vis'][...] += component_vis.data['vis'][...]

        # Do an isoplanatic selfcal
        self.model_vis = copy_visibility(self.vis, zero=True)
        self.model_vis = predict_skycomponent_visibility(
            self.model_vis, self.components)
        if doiso:
            gt = solve_gaintable(self.vis,
                                 self.model_vis,
                                 phase_only=True,
                                 timeslice='auto')
            self.vis = apply_gaintable(self.vis, gt, inverse=True)

        self.model_vis = convert_blockvisibility_to_visibility(self.model_vis)
        self.model_vis, _, _ = weight_visibility(self.model_vis, self.beam)
        self.dirty_model, sumwt = invert_function(self.model_vis,
                                                  self.beam,
                                                  context='2d')
        export_image_to_fits(self.dirty_model,
                             "%s/test_skymodel-model_dirty.fits" % self.dir)

        lvis = convert_blockvisibility_to_visibility(self.vis)
        lvis, _, _ = weight_visibility(lvis, self.beam)
        dirty, sumwt = invert_function(lvis, self.beam, context='2d')
        if doiso:
            export_image_to_fits(
                dirty, "%s/test_skymodel-initial-iso-residual.fits" % self.dir)
        else:
            export_image_to_fits(
                dirty,
                "%s/test_skymodel-initial-noiso-residual.fits" % self.dir)

        self.skymodels = [
            SkyModel(components=[cm], fixed=fixed) for cm in self.components
        ]
block_vis = convert_visibility_to_blockvisibility(predicted_vis)
#print("np.sum(block_vis.data): ", numpy.sum(block_vis.data['vis']))

#print("nchan npol nants ", block_vis.nchan, block_vis.npol, block_vis.nants)
#print("uvw", block_vis.uvw, numpy.sum(block_vis.uvw))
#print("vis", block_vis.vis, numpy.sum(block_vis.vis))
#print("weight", block_vis.weight, numpy.sum(block_vis.weight))
#print("time", block_vis.time, numpy.sum(block_vis.time))
#print("integration_time", block_vis.integration_time, numpy.sum(block_vis.integration_time))
#print("nvis, size", block_vis.nvis, block_vis.size())

gt = create_gaintable_from_blockvisibility(block_vis)
#print("np.sum(gt.data): ", numpy.sum(gt.data['gain']))
gt = simulate_gaintable(gt, phase_error=1.0)
#print("np.sum(gt.data): ", numpy.sum(gt.data['gain']))
blockvis = apply_gaintable(block_vis, gt)
#print("np.sum(blockvis.data): ", numpy.sum(blockvis.data['vis']))

model = create_image_from_visibility(
    block_vis,
    npixel=npixel,
    frequency=[numpy.average(frequency)],
    nchan=1,
    channel_bandwidth=[numpy.sum(channel_bandwidth)],
    cellsize=cellsize,
    phasecentre=phasecentre)

#print("model sum, min, max, shape: ", numpy.sum(model.data), numpy.amin(model.data), numpy.amax(model.data), model.shape)

print(qa_image(model, context='Blockvis model image'))
export_image_to_fits(model, '%s/imaging-blockvis_model.fits' % (results_dir))
 def predict_and_apply(ovis, calskymodel):
     tvis = copy_visibility(ovis, zero=True)
     tvis = predict_skymodel_visibility(tvis, calskymodel[0])
     tvis = apply_gaintable(tvis, calskymodel[1])
     return tvis
Exemplo n.º 18
0
 def corrupt_vis(vis, gt, **kwargs):
     if gt is None:
         gt = create_gaintable_from_blockvisibility(vis, **kwargs)
         gt = simulate_gaintable(gt, **kwargs)
     return apply_gaintable(vis, gt)
 def predict_and_apply(ovis, modelpartition):
     tvis = copy_visibility(ovis, zero=True)
     tvis = predict_skymodel_visibility(tvis, modelpartition[0])
     tvis = apply_gaintable(tvis, modelpartition[1])
     return tvis