Exemplo n.º 1
0
## This program is for DAC HDC contest ######
## 2017/11/22
## [email protected]
## University of Notre Dame

import procfunc
import math
import numpy as np
import time
#### !!!! you can import any package needed for your program ######

if __name__ == "__main__":
    teamName = 'USL-TAMU'
    DAC = './test2'
    [imgDir, resultDir, timeDir, xmlDir, myXmlDir, allTimeFile] = procfunc.setupDir(DAC, teamName)

    [allImageName, imageNum] = procfunc.getImageNames(imgDir)
    ### process all the images in batch
    batchNumDiskToDram = 128 ## the # of images read from disk to DRAM in one time
    batchNumDramToGPU  = 16 ## the # of images read from DRAM to GPU in one time for batch processing on the GPU
    imageReadTime = math.ceil(float(imageNum)/float(batchNumDiskToDram))
    imageProcTimeEachRead = math.ceil(float(batchNumDiskToDram)/float(batchNumDramToGPU))
    resultRectangle = np.zeros((imageNum, 4)) ## store all the results about tracking accuracy
    resultRunTime = 0


if __name__=="__main__":
    for i in range(int(imageReadTime)):
        ImageDramBatch = procfunc.readImagesBatch(imgDir,allImageName, imageNum, i, batchNumDiskToDram)
        for j in range(int(imageProcTimeEachRead)):
            start = j*batchNumDramToGPU
Exemplo n.º 2
0
from __future__ import print_function
import os
import math
import time
# third-party libraries
import numpy as np
# local packages
import procfunc

# set root path of the detector
detector_root = '..'

if __name__ == "__main__":
    DAC = os.path.join(detector_root, 'data')
    [imgDir, resultDir, timeDir, xmlDir, myXmlDir,
     allTimeFile] = procfunc.setupDir(DAC)
    # load all the images paths
    [allImageName, imageNum] = procfunc.getImageNames(imgDir)
    img_path_lst = [os.path.join(imgDir, imgName) for imgName in allImageName]

    ##############################################
    ############### detection part ###############
    ##############################################
    # initialize
    cfg_path = os.path.join(detector_root, 'cfg', 'valid.cfg')
    model_path = os.path.join(detector_root, 'model',
                              'yolo_tiny_dacsdc_best.weights')
    res_bboxes = np.zeros((imageNum, 4), dtype=int)

    # inference
    time_start = time.time()
Exemplo n.º 3
0
    ## Folder structure:
    ## $DAC$|
    ##    |images   (all the test images are stored in this folder)
    ##    |results-$teamName$|
    ##            |time
    ##            |xml

    ## !!!! Please specify your team name here
    teamName = 'RandomSearch'
    ## !!!! please specify the dir here, and please put all the images for test in the folder "images".
    ## Important! You can specify the folder in your local test. But for the sumission, DAC folder is fixed as follows
    #DAC = '/home/DACSDC_GPU' ## uncomment this line when submitting your code
    DAC = '/home/nvidia/DAC/DAC18-Contest-GPU-v1'
    # DAC = 'D:/DAC-dataset/test'
    [imgDir, resultDir, timeDir, xmlDir, myXmlDir,
     allTimeFile] = procfunc.setupDir(DAC, teamName)

    ############### processing for object detection and tracking ###########################################################
    ### load all the images names
    [allImageName, imageNum] = procfunc.getImageNames(imgDir)
    ### process all the images in batch
    batchNumDiskToDram = 5  ## the # of images read from disk to DRAM in one time
    batchNumDramToGPU = 3  ## the # of images read from DRAM to GPU in one time for batch processing on the GPU
    imageReadTime = int(math.ceil(imageNum / batchNumDiskToDram))
    imageProcTimeEachRead = int(
        math.ceil(batchNumDiskToDram / batchNumDramToGPU))
    resultRectangle = np.zeros(
        (imageNum, 4))  ## store all the results about tracking accuracy

    time_start = time.time()