Exemplo n.º 1
0
def showPairDeformationDist(model, coords, ind1, ind2, *args, **kwargs):
    """Show distribution of deformations in distance contributed by each mode
    for selected pair of residues *ind1* *ind2*
    using :func:`~matplotlib.pyplot.plot`. """

    import matplotlib
    import matplotlib.pyplot as plt
    if not isinstance(model, NMA):
        raise TypeError('model must be a NMA instance, '
                        'not {0}'.format(type(model)))
    elif not model.is3d():
        raise TypeError('model must be a 3-dimensional NMA instance')
    elif len(model) == 0:
        raise ValueError('model must have normal modes calculated')
    elif model.getStiffness() is None:
        raise ValueError('model must have stiffness matrix calculated')

    d_pair = calcPairDeformationDist(model, coords, ind1, ind2)
    with plt.style.context('fivethirtyeight'):
        matplotlib.rcParams['font.size'] = '16'
        fig = plt.figure(num=None, figsize=(12,8), dpi=100, facecolor='w')
        #plt.title(str(model))
        plt.plot(d_pair[0], d_pair[1], 'k-', linewidth=1.5, *args, **kwargs)
        plt.xlabel('mode (k)', fontsize = '18')
        plt.ylabel('d$^k$' '($\AA$)', fontsize = '18')    
    if SETTINGS['auto_show']:
        showFigure()
    return plt.show
Exemplo n.º 2
0
def showNormDistFunct(model, coords, *args, **kwargs):
    """Show normalized distance fluctuation matrix using 
    :func:`~matplotlib.pyplot.imshow`. By default, *origin=lower* 
    keyword  arguments are passed to this function, 
    but user can overwrite these parameters."""

    import math
    import matplotlib
    import matplotlib.pyplot as plt
    normdistfunct = model.getNormDistFluct(coords)

    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
        
    matplotlib.rcParams['font.size'] = '14'
    fig = plt.figure(num=None, figsize=(10,8), dpi=100, facecolor='w')
    show = plt.imshow(normdistfunct, *args, **kwargs), plt.colorbar()
    plt.clim(math.floor(np.min(normdistfunct[np.nonzero(normdistfunct)])), \
                                           round(np.amax(normdistfunct),1))
    plt.title('Normalized Distance Fluctution Matrix')
    plt.xlabel('Indices', fontsize='16')
    plt.ylabel('Indices', fontsize='16')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 3
0
def showLinkage(V, **kwargs):
    """Shows the dendrogram of hierarchical clustering on *V*. See :func:`scipy.cluster.hierarchy.dendrogram` for details.

    :arg V: row-normalized eigenvectors for the purpose of clustering.
    :type V: :class:`numpy.ndarray`

    """
    from .functions import _getEigvecs

    V = _getEigvecs(V, row_norm=True)
    try:
        from scipy.cluster.hierarchy import linkage, fcluster, dendrogram
    except ImportError:
        raise ImportError('Use of this function (showLinkage) requires the '
                          'installation of scipy.')
    
    method = kwargs.pop('method', 'single')
    metric = kwargs.pop('metric', 'euclidean')
    Z = linkage(V, method=method, metric=metric)

    no_labels = kwargs.pop('no_labels', True)
    dendrogram(Z, no_labels=no_labels, **kwargs)
    if SETTINGS['auto_show']:
        showFigure()
    return Z
    
Exemplo n.º 4
0
def showScaledSqFlucts(modes, *args, **kwargs):
    """Show scaled square fluctuations using :func:`~matplotlib.pyplot.plot`.
    Modes or mode sets given as additional arguments will be scaled to have
    the same mean squared fluctuations as *modes*."""

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    mean = sqf.mean()
    args = list(args)
    modesarg = []
    i = 0
    while i < len(args):
        if isinstance(args[i], (VectorBase, ModeSet, NMA)):
            modesarg.append(args.pop(i))
        else:
            i += 1
    show = [plt.plot(sqf, *args, label=str(modes), **kwargs)]
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    for modes in modesarg:
        sqf = calcSqFlucts(modes)
        scalar = mean / sqf.mean()
        show.append(plt.plot(sqf * scalar, *args,
                             label='{0} (x{1:.2f})'.format(str(modes), scalar),
                             **kwargs))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 5
0
def showNormedSqFlucts(modes, *args, **kwargs):
    """Show normalized square fluctuations via :func:`~matplotlib.pyplot.plot`.
    """

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    args = list(args)
    modesarg = []
    i = 0
    while i < len(args):
        if isinstance(args[i], (VectorBase, ModeSet, NMA)):
            modesarg.append(args.pop(i))
        else:
            i += 1
    show = [
        plt.plot(sqf / (sqf**2).sum()**0.5,
                 *args,
                 label='{0}'.format(str(modes)),
                 **kwargs)
    ]
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    for modes in modesarg:
        sqf = calcSqFlucts(modes)
        show.append(
            plt.plot(sqf / (sqf**2).sum()**0.5,
                     *args,
                     label='{0}'.format(str(modes)),
                     **kwargs))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 6
0
def showOverlapTable(modes_x, modes_y, **kwargs):
    """Show overlap table using :func:`~matplotlib.pyplot.pcolor`.  *modes_x*
    and *modes_y* are sets of normal modes, and correspond to x and y axes of
    the plot.  Note that mode indices are incremented by 1.  List of modes
    is assumed to contain a set of contiguous modes from the same model.

    Default arguments for :func:`~matplotlib.pyplot.pcolor`:

      * ``cmap=plt.cm.jet``
      * ``norm=matplotlib.colors.Normalize(0, 1)``"""

    import matplotlib.pyplot as plt

    overlap = abs(calcOverlap(modes_y, modes_x))
    if overlap.ndim == 0:
        overlap = np.array([[overlap]])
    elif overlap.ndim == 1:
        overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))

    cmap = kwargs.pop('cmap', plt.cm.jet)
    norm = kwargs.pop('norm', matplotlib.colors.Normalize(0, 1))
    show = (plt.pcolor(overlap, cmap=cmap, norm=norm,
                       **kwargs), plt.colorbar())
    x_range = np.arange(1, modes_x.numModes() + 1)
    plt.xticks(x_range - 0.5, x_range)
    plt.xlabel(str(modes_x))
    y_range = np.arange(1, modes_y.numModes() + 1)
    plt.yticks(y_range - 0.5, y_range)
    plt.ylabel(str(modes_y))
    plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 7
0
def showNormDistFunct(model, coords, *args, **kwargs):
    """Show normalized distance fluctuation matrix using 
    :func:`~matplotlib.pyplot.imshow`. By default, *origin=lower* 
    keyword  arguments are passed to this function, 
    but user can overwrite these parameters."""

    import math
    import matplotlib
    import matplotlib.pyplot as plt
    normdistfunct = model.getNormDistFluct(coords)

    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'

    matplotlib.rcParams['font.size'] = '14'
    fig = plt.figure(num=None, figsize=(10, 8), dpi=100, facecolor='w')
    show = plt.imshow(normdistfunct, *args, **kwargs), plt.colorbar()
    plt.clim(math.floor(np.min(normdistfunct[np.nonzero(normdistfunct)])), \
                                           round(np.amax(normdistfunct),1))
    plt.title('Normalized Distance Fluctution Matrix')
    plt.xlabel('Indices', fontsize='16')
    plt.ylabel('Indices', fontsize='16')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 8
0
def showMechStiff(model, coords, *args, **kwargs):
    """Show mechanical stiffness matrix using :func:`~matplotlib.pyplot.imshow`.
    By default, *origin=lower* keyword  arguments are passed to this function, 
    but user can overwrite these parameters."""

    import math
    import matplotlib
    import matplotlib.pyplot as plt
    arange = np.arange(model.numAtoms())
    model.buildMechStiff(coords)

    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
    if 'jet_r' in kwargs:
        import matplotlib.cm as plt
        kwargs['jet_r'] = 'cmap=cm.jet_r'

    MechStiff = model.getStiffness()
    matplotlib.rcParams['font.size'] = '14'
    fig = plt.figure(num=None, figsize=(10, 8), dpi=100, facecolor='w')
    show = plt.imshow(MechStiff, *args, **kwargs), plt.colorbar()
    plt.clim(math.floor(np.min(MechStiff[np.nonzero(MechStiff)])), \
                                           round(np.amax(MechStiff),1))
    #plt.title('Mechanical Stiffness Matrix')# for {0}'.format(str(model)))
    plt.xlabel('Indices', fontsize='16')
    plt.ylabel('Indices', fontsize='16')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 9
0
def showPairDeformationDist(model, coords, ind1, ind2, *args, **kwargs):
    """Show distribution of deformations in distance contributed by each mode
    for selected pair of residues *ind1* *ind2*
    using :func:`~matplotlib.pyplot.plot`. """

    import matplotlib
    import matplotlib.pyplot as plt
    if not isinstance(model, NMA):
        raise TypeError('model must be a NMA instance, '
                        'not {0}'.format(type(model)))
    elif not model.is3d():
        raise TypeError('model must be a 3-dimensional NMA instance')
    elif len(model) == 0:
        raise ValueError('model must have normal modes calculated')
    elif model.getStiffness() is None:
        raise ValueError('model must have stiffness matrix calculated')

    d_pair = calcPairDeformationDist(model, coords, ind1, ind2)
    with plt.style.context('fivethirtyeight'):
        matplotlib.rcParams['font.size'] = '16'
        fig = plt.figure(num=None, figsize=(12, 8), dpi=100, facecolor='w')
        #plt.title(str(model))
        plt.plot(d_pair[0], d_pair[1], 'k-', linewidth=1.5, *args, **kwargs)
        plt.xlabel('mode (k)', fontsize='18')
        plt.ylabel('d$^k$' '($\AA$)', fontsize='18')
    if SETTINGS['auto_show']:
        showFigure()
    return plt.show
Exemplo n.º 10
0
def showCumulFractVars(modes, *args, **kwargs):
    """Show fraction of variances of *modes* using :func:`~matplotlib.pyplot.
    plot`.  Note that mode indices are incremented by 1.  See also
    :func:`.showFractVars` function."""

    import matplotlib.pyplot as plt
    if not isinstance(modes, (Mode, NMA, ModeSet)):
        raise TypeError('modes must be a Mode, NMA, or ModeSet instance, '
                        'not {0}'.format(type(modes)))
    if isinstance(modes, Mode):
        indices = modes.getIndices() + 0.5
        modes = [modes]
    elif isinstance(modes, ModeSet):
        indices = modes.getIndices() + 0.5
    else:
        indices = np.arange(len(modes)) + 0.5

    fracts = calcFractVariance(modes).cumsum()
    show = plt.plot(indices, fracts, *args, **kwargs)
    axis = list(plt.axis())
    axis[0] = 0.5
    axis[2] = 0
    axis[3] = 1
    plt.axis(axis)
    plt.xlabel('Mode index')
    plt.ylabel('Fraction of variance')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 11
0
def showMode(mode, *args, **kwargs):
    """Show mode array using :func:`~matplotlib.pyplot.plot`."""
    
    import matplotlib.pyplot as plt
    show_hinge = kwargs.pop('hinge', True)
    show_zero = kwargs.pop('zero', False)
    if not isinstance(mode, Mode):
        raise TypeError('mode must be a Mode instance, '
                        'not {0}'.format(type(mode)))
    if mode.is3d():
        a3d = mode.getArrayNx3()
        show = plt.plot(a3d[:, 0], *args, label='x-component', **kwargs)
        plt.plot(a3d[:, 1], *args, label='y-component', **kwargs)
        plt.plot(a3d[:, 2], *args, label='z-component', **kwargs)
    else:
        a1d = mode._getArray()
        show = plt.plot(a1d, *args, **kwargs)
        if show_hinge:
            hinges = mode.getHinges()
            if hinges is not None:
                plt.plot(hinges, a1d[hinges], 'r*')
    plt.title(str(mode))
    plt.xlabel('Indices')
    if show_zero:
        plt.plot(plt.xlim(), (0,0), 'r--')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 12
0
def showMeanMechStiff(model, coords, header, chain='A', *args, **kwargs):
    """Show mean value of effective spring constant with secondary structure
    taken from MechStiff. Header is needed to obatin secondary structure range.
    Using ``'jet_r'`` as argument color map will be reverse (similar to VMD 
    program coding).
    """
    meanStiff = np.array([np.mean(model.getStiffness(), axis=0)])
    import matplotlib
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    fig = plt.figure(figsize=[18, 6], facecolor='w', dpi=100)

    if 'jet_r' in kwargs:
        import matplotlib.cm as plt
        kwargs['jet_r'] = 'cmap=cm.jet_r'
    if 'nearest' in kwargs:
        kwargs['nearest'] = 'interpolation=nearest'

    with plt.style.context('fivethirtyeight'):
        ax = fig.add_subplot(111)
        matplotlib.rcParams['font.size'] = '24'
        plt.plot(np.arange(len(meanStiff[0])) + coords.getResnums()[0],
                 meanStiff[0],
                 'k-',
                 linewidth=3)
        plt.xlim(coords.getResnums()[0], coords.getResnums()[-1])
        ax_top = round(
            np.max(meanStiff[0]) +
            ((np.max(meanStiff[0]) - np.min(meanStiff[0])) / 3))
        ax_bottom = np.floor(np.min(meanStiff[0]))
        LOGGER.info(
            'The range of mean effective force constant is: {0} to {1}.'.
            format(min(meanStiff[0]), max(meanStiff[0])))
        plt.ylim(ax_bottom, ax_top)
        plt.xlabel('residue', fontsize='22')
        plt.ylabel('mean $\kappa$ [a.u.]', fontsize='22')

    ax = fig.add_subplot(411, aspect='equal')
    plt.imshow(meanStiff, *args, **kwargs)
    header_ss = header['sheet_range'] + header['helix_range']
    for i in range(len(header_ss)):
        if header_ss[i][1] == chain:
            beg = int(header_ss[i][-2]) - coords.getResnums()[0]
            end = int(header_ss[i][-1]) - coords.getResnums()[0]
            add_beg = end - beg
            if header_ss[i][0] == 'H':
                ax.add_patch(patches.Rectangle((beg-1,-0.7),add_beg,\
                1.4,fill=False, linestyle='solid',edgecolor='#b22683', linewidth=2))
            elif header_ss[i][0] == 'E':
                if header_ss[i][2] == -1:
                    ax.add_patch(patches.Arrow(beg-1,0,add_beg,0,width=4.65, \
                    fill=False, linestyle='solid',edgecolor='black', linewidth=2))
                else:
                    ax.add_patch(patches.Arrow(end-1,0,add_beg*(-1),0,width=4.65, \
                    fill=False, linestyle='solid',edgecolor='black', linewidth=2))
    plt.axis('off')
    ax.set_ylim(-1.7, 1.7)
    if SETTINGS['auto_show']:
        showFigure()
    return plt.show
Exemplo n.º 13
0
def showOverlapTable(modes_x, modes_y, **kwargs):
    """Show overlap table using :func:`~matplotlib.pyplot.pcolor`.  *modes_x*
    and *modes_y* are sets of normal modes, and correspond to x and y axes of
    the plot.  Note that mode indices are incremented by 1.  List of modes
    is assumed to contain a set of contiguous modes from the same model.

    Default arguments for :func:`~matplotlib.pyplot.pcolor`:

      * ``cmap=plt.cm.jet``
      * ``norm=plt.normalize(0, 1)``"""

    import matplotlib.pyplot as plt

    overlap = abs(calcOverlap(modes_y, modes_x))
    if overlap.ndim == 0:
        overlap = np.array([[overlap]])
    elif overlap.ndim == 1:
        overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))

    cmap = kwargs.pop('cmap', plt.cm.jet)
    norm = kwargs.pop('norm', plt.normalize(0, 1))
    show = (plt.pcolor(overlap, cmap=cmap, norm=norm, **kwargs),
            plt.colorbar())
    x_range = np.arange(1, modes_x.numModes() + 1)
    plt.xticks(x_range-0.5, x_range)
    plt.xlabel(str(modes_x))
    y_range = np.arange(1, modes_y.numModes() + 1)
    plt.yticks(y_range-0.5, y_range)
    plt.ylabel(str(modes_y))
    plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 14
0
def showMode(mode, *args, **kwargs):
    """Show mode array using :func:`~matplotlib.pyplot.plot`."""

    import matplotlib.pyplot as plt
    show_hinge = kwargs.pop('hinge', True)
    show_zero = kwargs.pop('zero', False)
    if not isinstance(mode, Mode):
        raise TypeError('mode must be a Mode instance, '
                        'not {0}'.format(type(mode)))
    if mode.is3d():
        a3d = mode.getArrayNx3()
        show = plt.plot(a3d[:, 0], *args, label='x-component', **kwargs)
        plt.plot(a3d[:, 1], *args, label='y-component', **kwargs)
        plt.plot(a3d[:, 2], *args, label='z-component', **kwargs)
    else:
        a1d = mode._getArray()
        show = plt.plot(a1d, *args, **kwargs)
        if show_hinge:
            hinges = mode.getHinges()
            if hinges is not None:
                plt.plot(hinges, a1d[hinges], 'r*')
    plt.title(str(mode))
    plt.xlabel('Indices')
    if show_zero:
        plt.plot(plt.xlim(), (0, 0), 'r--')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 15
0
def showNormedSqFlucts(modes, *args, **kwargs):
    """Show normalized square fluctuations via :func:`~matplotlib.pyplot.plot`.
    """

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    args = list(args)
    modesarg = []
    i = 0
    while i < len(args):
        if isinstance(args[i], (VectorBase, ModeSet, NMA)):
            modesarg.append(args.pop(i))
        else:
            i += 1
    show = [plt.plot(sqf/(sqf**2).sum()**0.5, *args,
                     label='{0}'.format(str(modes)), **kwargs)]
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    for modes in modesarg:
        sqf = calcSqFlucts(modes)
        show.append(plt.plot(sqf/(sqf**2).sum()**0.5, *args,
                    label='{0}'.format(str(modes)), **kwargs))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 16
0
def showScaledSqFlucts(modes, *args, **kwargs):
    """Show scaled square fluctuations using :func:`~matplotlib.pyplot.plot`.
    Modes or mode sets given as additional arguments will be scaled to have
    the same mean squared fluctuations as *modes*."""

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    mean = sqf.mean()
    args = list(args)
    modesarg = []
    i = 0
    while i < len(args):
        if isinstance(args[i], (VectorBase, ModeSet, NMA)):
            modesarg.append(args.pop(i))
        else:
            i += 1
    show = [plt.plot(sqf, *args, label=str(modes), **kwargs)]
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    for modes in modesarg:
        sqf = calcSqFlucts(modes)
        scalar = mean / sqf.mean()
        show.append(
            plt.plot(sqf * scalar,
                     *args,
                     label='{0} (x{1:.2f})'.format(str(modes), scalar),
                     **kwargs))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 17
0
def showOverlap(mode, modes, *args, **kwargs):
    """Show overlap :func:`~matplotlib.pyplot.bar`.

    :arg mode: a single mode/vector
    :type mode: :class:`.Mode`, :class:`.Vector`
    :arg modes: multiple modes
    :type modes: :class:`.ModeSet`, :class:`.ANM`, :class:`.GNM`, :class:`.PCA`
    """

    import matplotlib.pyplot as plt
    if not isinstance(mode, (Mode, Vector)):
        raise TypeError('mode must be Mode or Vector, not {0}'
                        .format(type(mode)))
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be NMA or ModeSet, not {0}'
                        .format(type(modes)))
    overlap = abs(calcOverlap(mode, modes))
    if isinstance(modes, NMA):
        arange = np.arange(0.5, len(modes)+0.5)
    else:
        arange = modes.getIndices() + 0.5
    show = plt.bar(arange, overlap, *args, **kwargs)
    plt.title('Overlap with {0}'.format(str(mode)))
    plt.xlabel('{0} mode index'.format(modes))
    plt.ylabel('Overlap')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 18
0
def showCumulOverlap(mode, modes, *args, **kwargs):
    """Show cumulative overlap using :func:`~matplotlib.pyplot.plot`.

    :type mode: :class:`.Mode`, :class:`.Vector`
    :arg modes: multiple modes
    :type modes: :class:`.ModeSet`, :class:`.ANM`, :class:`.GNM`, :class:`.PCA`
    """

    import matplotlib.pyplot as plt
    if not isinstance(mode, (Mode, Vector)):
        raise TypeError('mode must be NMA, ModeSet, Mode or Vector, not {0}'
                        .format(type(mode)))
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be NMA, ModeSet, or Mode, not {0}'
                        .format(type(modes)))
    cumov = (calcOverlap(mode, modes) ** 2).cumsum() ** 0.5
    if isinstance(modes, NMA):
        arange = np.arange(0.5, len(modes)+0.5)
    else:
        arange = modes.getIndices() + 0.5
    show = plt.plot(arange, cumov, *args, **kwargs)
    plt.title('Cumulative overlap with {0}'.format(str(mode)))
    plt.xlabel('{0} mode index'.format(modes))
    plt.ylabel('Cumulative overlap')
    plt.axis((arange[0]-0.5, arange[-1]+0.5, 0, 1))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 19
0
def showMechStiff(model, coords, *args, **kwargs):
    """Show mechanical stiffness matrix using :func:`~matplotlib.pyplot.imshow`.
    By default, *origin=lower* keyword  arguments are passed to this function, 
    but user can overwrite these parameters."""

    import math
    import matplotlib
    import matplotlib.pyplot as plt
    arange = np.arange(model.numAtoms())
    model.buildMechStiff(coords)

    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
    if 'jet_r' in kwargs:
        import matplotlib.cm as plt
        kwargs['jet_r'] = 'cmap=cm.jet_r'
        
    MechStiff = model.getStiffness()
    matplotlib.rcParams['font.size'] = '14'
    fig = plt.figure(num=None, figsize=(10,8), dpi=100, facecolor='w')
    show = plt.imshow(MechStiff, *args, **kwargs), plt.colorbar()
    plt.clim(math.floor(np.min(MechStiff[np.nonzero(MechStiff)])), \
                                           round(np.amax(MechStiff),1))
    #plt.title('Mechanical Stiffness Matrix')# for {0}'.format(str(model)))
    plt.xlabel('Indices', fontsize='16')
    plt.ylabel('Indices', fontsize='16')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 20
0
def showCumulOverlap(mode, modes, *args, **kwargs):
    """Show cumulative overlap using :func:`~matplotlib.pyplot.plot`.

    :type mode: :class:`.Mode`, :class:`.Vector`
    :arg modes: multiple modes
    :type modes: :class:`.ModeSet`, :class:`.ANM`, :class:`.GNM`, :class:`.PCA`
    """

    import matplotlib.pyplot as plt
    if not isinstance(mode, (Mode, Vector)):
        raise TypeError(
            'mode must be NMA, ModeSet, Mode or Vector, not {0}'.format(
                type(mode)))
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be NMA, ModeSet, or Mode, not {0}'.format(
            type(modes)))
    cumov = (calcOverlap(mode, modes)**2).cumsum()**0.5
    if isinstance(modes, NMA):
        arange = np.arange(0.5, len(modes) + 0.5)
    else:
        arange = modes.getIndices() + 0.5
    show = plt.plot(arange, cumov, *args, **kwargs)
    plt.title('Cumulative overlap with {0}'.format(str(mode)))
    plt.xlabel('{0} mode index'.format(modes))
    plt.ylabel('Cumulative overlap')
    plt.axis((arange[0] - 0.5, arange[-1] + 0.5, 0, 1))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 21
0
def showCumulFractVars(modes, *args, **kwargs):
    """Show fraction of variances of *modes* using :func:`~matplotlib.pyplot.
    plot`.  Note that mode indices are incremented by 1.  See also
    :func:`.showFractVars` function."""

    import matplotlib.pyplot as plt
    if not isinstance(modes, (Mode, NMA, ModeSet)):
        raise TypeError('modes must be a Mode, NMA, or ModeSet instance, '
                        'not {0}'.format(type(modes)))
    if isinstance(modes, Mode):
        indices = modes.getIndices() + 0.5
        modes = [modes]
    elif isinstance(modes, ModeSet):
        indices = modes.getIndices() + 0.5
    else:
        indices = np.arange(len(modes)) + 0.5

    fracts = calcFractVariance(modes).cumsum()
    show = plt.plot(indices, fracts, *args, **kwargs)
    axis = list(plt.axis())
    axis[0] = 0.5
    axis[2] = 0
    axis[3] = 1
    plt.axis(axis)
    plt.xlabel('Mode index')
    plt.ylabel('Fraction of variance')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 22
0
def showOverlap(mode, modes, *args, **kwargs):
    """Show overlap :func:`~matplotlib.pyplot.bar`.

    :arg mode: a single mode/vector
    :type mode: :class:`.Mode`, :class:`.Vector`
    :arg modes: multiple modes
    :type modes: :class:`.ModeSet`, :class:`.ANM`, :class:`.GNM`, :class:`.PCA`
    """

    import matplotlib.pyplot as plt
    if not isinstance(mode, (Mode, Vector)):
        raise TypeError('mode must be Mode or Vector, not {0}'.format(
            type(mode)))
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be NMA or ModeSet, not {0}'.format(
            type(modes)))
    overlap = abs(calcOverlap(mode, modes))
    if isinstance(modes, NMA):
        arange = np.arange(0.5, len(modes) + 0.5)
    else:
        arange = modes.getIndices() + 0.5
    show = plt.bar(arange, overlap, *args, **kwargs)
    plt.title('Overlap with {0}'.format(str(mode)))
    plt.xlabel('{0} mode index'.format(modes))
    plt.ylabel('Overlap')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 23
0
def showSignatureVariances(mode_ensemble, **kwargs):
    """
    Show the distribution of signature variances using 
    :func:`~matplotlib.pyplot.hist`.
    """
    
    from matplotlib.pyplot import figure, hist, annotate, legend, xlabel, ylabel
    from matplotlib.figure import Figure

    fig = kwargs.pop('figure', None)

    if isinstance(fig, Figure):
        fig_num = fig.number
    elif fig is None or isinstance(fig, (int, str)):
        fig_num = fig
    else:
        raise TypeError('figure can be either an instance of matplotlib.figure.Figure '
                        'or a figure number.')
    if SETTINGS['auto_show']:
        figure(fig_num)
    elif fig_num is not None:
        figure(fig_num)

    fract = kwargs.pop('fraction', True)
    show_legend = kwargs.pop('legend', True)

    if fract:
        sig = calcSignatureFractVariance(mode_ensemble)
    else:
        sig = mode_ensemble.getVariances() 
    W = sig.getArray()[:, ::-1] # reversed to accommodate with matplotlib.pyplot.hist
    weights = np.ones_like(W)/float(len(W))

    indices = mode_ensemble.getIndices()[0]
    legends = ['mode %d'%(i+1) for i in indices][::-1]

    bins = kwargs.pop('bins', 'auto')
    if bins == 'auto':
        _, bins = np.histogram(W.flatten(), bins='auto')
    elif np.isscalar(bins) and isinstance(bins, (int, np.integer)):
        step = (W.max() - W.min())/bins
        bins = np.arange(W.min(), W.max(), step)

    histtype = kwargs.pop('histtype', 'stepfilled')
    label = kwargs.pop('label', legends)
    weights = kwargs.pop('weights', weights)
    n, bins, patches = hist(W, bins=bins, weights=weights, 
                            histtype=histtype, label=label, **kwargs)
    if show_legend:
        legend()

    xlabel('Variance')
    ylabel('Probability')

    if SETTINGS['auto_show']:
        showFigure()

    return n, bins, patches
Exemplo n.º 24
0
def showMeanMechStiff(model, coords, header, chain='A', *args, **kwargs):
    """Show mean value of effective spring constant with secondary structure
    taken from MechStiff. Header is needed to obatin secondary structure range.
    Using ``'jet_r'`` as argument color map will be reverse (similar to VMD 
    program coding).
    """
    meanStiff = np.array([np.mean(model.getStiffness(), axis=0)])
    import matplotlib
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    fig=plt.figure(figsize=[18,6], facecolor='w', dpi=100)
    
    if 'jet_r' in kwargs:
       import matplotlib.cm as plt
       kwargs['jet_r'] = 'cmap=cm.jet_r'
    if 'nearest' in kwargs:
        kwargs['nearest'] = 'interpolation=nearest'

    with plt.style.context('fivethirtyeight'):
        ax = fig.add_subplot(111)
        matplotlib.rcParams['font.size'] = '24'
        plt.plot(np.arange(len(meanStiff[0]))+coords.getResnums()[0],meanStiff[0], 'k-', linewidth = 3)
        plt.xlim(coords.getResnums()[0], coords.getResnums()[-1])
        ax_top=round(np.max(meanStiff[0])+((np.max(meanStiff[0])-np.min(meanStiff[0]))/3))
        ax_bottom=np.floor(np.min(meanStiff[0]))
        LOGGER.info('The range of mean effective force constant is: {0} to {1}.'
                                           .format(min(meanStiff[0]), max(meanStiff[0])))
        plt.ylim(ax_bottom,ax_top)
        plt.xlabel('residue', fontsize = '22')
        plt.ylabel('mean $\kappa$ [a.u.]', fontsize = '22')

    ax = fig.add_subplot(411, aspect='equal')
    plt.imshow(meanStiff, *args, **kwargs)
    header_ss = header['sheet_range'] + header['helix_range']
    for i in range(len(header_ss)):
        if header_ss[i][1] == chain:
            beg = int(header_ss[i][-2])-coords.getResnums()[0]
            end = int(header_ss[i][-1])-coords.getResnums()[0]
            add_beg = end - beg
            if header_ss[i][0] == 'H':
                ax.add_patch(patches.Rectangle((beg-1,-0.7),add_beg,\
                1.4,fill=False, linestyle='solid',edgecolor='#b22683', linewidth=2))    
            elif header_ss[i][0] == 'E':
                if header_ss[i][2] == -1:    
                    ax.add_patch(patches.Arrow(beg-1,0,add_beg,0,width=4.65, \
                    fill=False, linestyle='solid',edgecolor='black', linewidth=2))
                else: 
                    ax.add_patch(patches.Arrow(end-1,0,add_beg*(-1),0,width=4.65, \
                    fill=False, linestyle='solid',edgecolor='black', linewidth=2))
    plt.axis('off')
    ax.set_ylim(-1.7,1.7)
    if SETTINGS['auto_show']:
        showFigure()
    return plt.show
Exemplo n.º 25
0
def showSqFlucts(modes, *args, **kwargs):
    """Show square fluctuations using :func:`~matplotlib.pyplot.plot`.  See
    also :func:`.calcSqFlucts`."""

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    if not 'label' in kwargs:
        kwargs['label'] = str(modes)
    show = plt.plot(sqf, *args, **kwargs)
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    plt.title(str(modes))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 26
0
def showSqFlucts(modes, *args, **kwargs):
    """Show square fluctuations using :func:`~matplotlib.pyplot.plot`.  See
    also :func:`.calcSqFlucts`."""

    import matplotlib.pyplot as plt
    sqf = calcSqFlucts(modes)
    if not 'label' in kwargs:
        kwargs['label'] = str(modes)
    show = plt.plot(sqf, *args, **kwargs)
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    plt.title(str(modes))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 27
0
def showContactMap(enm, *args, **kwargs):
    """Show Kirchhoff matrix using :func:`~matplotlib.pyplot.spy`."""

    import matplotlib.pyplot as plt
    if not isinstance(enm, GNMBase):
        raise TypeError('model argument must be an ENM instance')
    kirchhoff = enm.getKirchhoff()
    if kirchhoff is None:
        LOGGER.warning('kirchhoff matrix is not set')
        return None
    show = plt.spy(kirchhoff, *args, **kwargs)
    plt.title('{0} contact map'.format(enm.getTitle()))
    plt.xlabel('Residue index')
    plt.ylabel('Residue index')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 28
0
def showContactMap(enm, *args, **kwargs):
    """Show Kirchhoff matrix using :func:`~matplotlib.pyplot.spy`."""

    import matplotlib.pyplot as plt
    if not isinstance(enm, GNMBase):
        raise TypeError('model argument must be an ENM instance')
    kirchhoff = enm.getKirchhoff()
    if kirchhoff is None:
        LOGGER.warning('kirchhoff matrix is not set')
        return None
    show = plt.spy(kirchhoff, *args, **kwargs)
    plt.title('{0} contact map'.format(enm.getTitle()))
    plt.xlabel('Residue index')
    plt.ylabel('Residue index')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 29
0
def showDiffMatrix(matrix1, matrix2, *args, **kwargs):
    """Show the difference between two cross-correlation matrices from
    different models. For given *matrix1* and *matrix2* show the difference
    between them in the form of (matrix2 - matrix1) and plot the difference
    matrix using :func:`~matplotlib.pyplot.imshow`. When :class:`.NMA` models
    are passed instead of matrices, the functions could call
    :func:`.calcCrossCorr` function to calculate the matrices for given modes.

    To display the absolute values in the difference matrix, user could set
    *abs* keyword argument **True**.

    By default, *origin=lower* and *interpolation=bilinear* keyword arguments
    are passed to this function, but user can overwrite these parameters.
    """

    import matplotlib.pyplot as plt

    try:
        dim1, shape1 = matrix1.ndim, matrix1.shape
    except AttributeError:
        matrix1 = calcCrossCorr(matrix1)
        dim1, shape1 = matrix1.ndim, matrix1.shape
    try:
        dim2, shape2 = matrix2.ndim, matrix2.shape
    except AttributeError:
        matrix2 = calcCrossCorr(matrix2)
        dim2, shape2 = matrix2.ndim, matrix2.shape
    if not ((dim1 == dim2 == 2) and (shape1 == shape2)):
        raise ValueError("Matrices must have same square shape.")
    if shape1[0] * shape1[1] == 0:
        raise ValueError("There are no data in matrices.")
    diff = matrix2 - matrix1
    if not "interpolation" in kwargs:
        kwargs["interpolation"] = "bilinear"
    if not "origin" in kwargs:
        kwargs["origin"] = "lower"
    if kwargs.pop("abs", False):
        diff = np.abs(diff)
    show = plt.imshow(diff, *args, **kwargs), plt.colorbar()
    plt.axis([-0.5, shape1[1] - 0.5, -0.5, shape1[0] - 0.5])
    plt.title("Difference Matrix")
    if SETTINGS["auto_show"]:
        showFigure()
    plt.xlabel("Indices")
    plt.ylabel("Indices")
    return show
Exemplo n.º 30
0
def showDiffMatrix(matrix1, matrix2, *args, **kwargs):
    """Show the difference between two cross-correlation matrices from
    different models. For given *matrix1* and *matrix2* show the difference
    between them in the form of (matrix2 - matrix1) and plot the difference
    matrix using :func:`~matplotlib.pyplot.imshow`. When :class:`.NMA` models
    are passed instead of matrices, the functions could call
    :func:`.calcCrossCorr` function to calculate the matrices for given modes.

    To display the absolute values in the difference matrix, user could set
    *abs* keyword argument **True**.

    By default, *origin=lower* and *interpolation=bilinear* keyword arguments
    are passed to this function, but user can overwrite these parameters.
    """

    import matplotlib.pyplot as plt
    try:
        dim1, shape1 = matrix1.ndim, matrix1.shape
    except AttributeError:
        matrix1 = calcCrossCorr(matrix1)
        dim1, shape1 = matrix1.ndim, matrix1.shape
    try:
        dim2, shape2 = matrix2.ndim, matrix2.shape
    except AttributeError:
        matrix2 = calcCrossCorr(matrix2)
        dim2, shape2 = matrix2.ndim, matrix2.shape
    if (not ((dim1 == dim2 == 2) and (shape1 == shape2))):
        raise ValueError('Matrices must have same square shape.')
    if shape1[0] * shape1[1] == 0:
        raise ValueError('There are no data in matrices.')
    diff = matrix2 - matrix1
    if not 'interpolation' in kwargs:
        kwargs['interpolation'] = 'bilinear'
    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
    if kwargs.pop('abs', False):
        diff = np.abs(diff)
    show = plt.imshow(diff, *args, **kwargs), plt.colorbar()
    plt.axis([-.5, shape1[1] - .5, -.5, shape1[0] - .5])
    plt.title('Difference Matrix')
    if SETTINGS['auto_show']:
        showFigure()
    plt.xlabel('Indices')
    plt.ylabel('Indices')
    return show
Exemplo n.º 31
0
def showDomains(domains, linespec='-', **kwargs):
    """A convenient function that can be used to visualize Hi-C structural domains. 
    *kwargs* will be passed to :func:`matplotlib.pyplot.plot`.

    :arg domains: a 2D array of Hi-C domains, such as [[start1, end1], [start2, end2], ...].
    :type domains: :class:`numpy.ndarray`
    """

    domains = np.array(domains)
    shape = domains.shape

    if len(shape) < 2:
        # convert to domain list if labels are provided
        indicators = np.diff(domains)
        indicators = np.append(1., indicators)
        indicators[-1] = 1
        sites = np.where(indicators != 0)[0]
        starts = sites[:-1]
        ends = sites[1:]
        domains = np.array([starts, ends]).T

    from matplotlib.pyplot import figure, plot

    x = []
    y = []
    lwd = kwargs.pop('linewidth', 1)
    lwd = kwargs.pop('lw', lwd)
    linewidth = np.abs(lwd)
    for i in range(len(domains)):
        domain = domains[i]
        start = domain[0]
        end = domain[1]
        if lwd > 0:
            x.extend([start, end, end])
            y.extend([start, start, end])
        else:
            x.extend([start, start, end])
            y.extend([start, end, end])

    plt = plot(x, y, linespec, linewidth=linewidth, **kwargs)
    if SETTINGS['auto_show']:
        showFigure()
    return plt
Exemplo n.º 32
0
def showMode(mode, *args, **kwargs):
    """Show mode array using :func:`~matplotlib.pyplot.plot`."""

    import matplotlib.pyplot as plt
    if not isinstance(mode, Mode):
        raise TypeError('mode must be a Mode instance, '
                        'not {0}'.format(type(mode)))
    if mode.is3d():
        a3d = mode.getArrayNx3()
        show = plt.plot(a3d[:, 0], *args, label='x-component', **kwargs)
        plt.plot(a3d[:, 1], *args, label='y-component', **kwargs)
        plt.plot(a3d[:, 2], *args, label='z-component', **kwargs)
    else:
        show = plt.plot(mode._getArray(), *args, **kwargs)
    plt.title(str(mode))
    plt.xlabel('Indices')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 33
0
def showMode(mode, *args, **kwargs):
    """Show mode array using :func:`~matplotlib.pyplot.plot`."""

    import matplotlib.pyplot as plt
    if not isinstance(mode, Mode):
        raise TypeError('mode must be a Mode instance, '
                        'not {0}'.format(type(mode)))
    if mode.is3d():
        a3d = mode.getArrayNx3()
        show = plt.plot(a3d[:, 0], *args, label='x-component', **kwargs)
        plt.plot(a3d[:, 1], *args, label='y-component', **kwargs)
        plt.plot(a3d[:, 2], *args, label='z-component', **kwargs)
    else:
        show = plt.plot(mode._getArray(), *args, **kwargs)
    plt.title(str(mode))
    plt.xlabel('Indices')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 34
0
def showSqFlucts(modes, *args, **kwargs):
    """Show square fluctuations using :func:`~matplotlib.pyplot.plot`.  See
    also :func:`.calcSqFlucts`."""

    import matplotlib.pyplot as plt
    show_hinge = kwargs.pop('hinge', True)
    sqf = calcSqFlucts(modes)
    if not 'label' in kwargs:
        kwargs['label'] = str(modes)
    show = plt.plot(sqf, *args, **kwargs)
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    plt.title(str(modes))
    if show_hinge and not modes.is3d():
        hinges = modes.getHinges()
        if hinges is not None:
            plt.plot(hinges, sqf[hinges], 'r*')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 35
0
def showSqFlucts(modes, *args, **kwargs):
    """Show square fluctuations using :func:`~matplotlib.pyplot.plot`.  See
    also :func:`.calcSqFlucts`."""

    import matplotlib.pyplot as plt
    show_hinge = kwargs.pop('hinge', True)
    sqf = calcSqFlucts(modes)
    if not 'label' in kwargs:
        kwargs['label'] = str(modes)
    show = plt.plot(sqf, *args, **kwargs)
    plt.xlabel('Indices')
    plt.ylabel('Square fluctuations')
    plt.title(str(modes))
    if show_hinge and not modes.is3d():
        hinges = modes.getHinges()
        if hinges is not None:
            plt.plot(hinges, sqf[hinges], 'r*')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 36
0
def showOccupancies(pdbensemble, *args, **kwargs):
    """Show occupancies for the PDB ensemble using :func:`~matplotlib.pyplot.
    plot`.  Occupancies are calculated using :meth:`calcOccupancies`."""

    import matplotlib.pyplot as plt

    if not isinstance(pdbensemble, PDBEnsemble):
        raise TypeError('pdbensemble must be a PDBEnsemble instance')
    weights = calcOccupancies(pdbensemble)
    if weights is None:
        return None
    show = plt.plot(weights, *args, **kwargs)
    axis = list(plt.axis())
    axis[2] = 0
    axis[3] += 1
    plt.axis(axis)
    plt.xlabel('Atom index')
    plt.ylabel('Sum of weights')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 37
0
def showOccupancies(pdbensemble, *args, **kwargs):
    """Show occupancies for the PDB ensemble using :func:`~matplotlib.pyplot.
    plot`.  Occupancies are calculated using :meth:`calcOccupancies`."""

    import matplotlib.pyplot as plt

    if not isinstance(pdbensemble, PDBEnsemble):
        raise TypeError('pdbensemble must be a PDBEnsemble instance')
    weights = calcOccupancies(pdbensemble)
    if weights is None:
        return None
    show = plt.plot(weights, *args, **kwargs)
    axis = list(plt.axis())
    axis[2] = 0
    axis[3] += 1
    plt.axis(axis)
    plt.xlabel('Atom index')
    plt.ylabel('Sum of weights')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 38
0
def showDomains(domains, linespec='r-', **kwargs):
    """A convenient function that can be used to visualize Hi-C structural domains. 
    *kwargs* will be passed to :func:`matplotlib.pyplot.plot`.

    :arg domains: a 2D array of Hi-C domains, such as [[start1, end1], [start2, end2], ...].
    :type domains: :class:`numpy.ndarray`
    """

    domains = np.array(domains)
    shape = domains.shape

    if len(shape) < 2:
        # convert to domain list if labels are provided
        indicators = np.diff(domains)
        indicators = np.append(1., indicators)
        indicators[-1] = 1
        sites = np.where(indicators != 0)[0]
        starts = sites[:-1]
        ends = sites[1:]
        domains = np.array([starts, ends]).T

    from matplotlib.pyplot import figure, plot

    x = []; y = []
    lwd = kwargs.pop('linewidth', 1)
    linewidth = np.abs(lwd)
    for i in range(len(domains)):
        domain = domains[i]
        start = domain[0]; end = domain[1]
        if lwd > 0:
            x.extend([start, end, end])
            y.extend([start, start, end])
        else:
            x.extend([start, start, end])
            y.extend([start, end, end])
    
    plt = plot(x, y, linespec, linewidth=linewidth, **kwargs)
    if SETTINGS['auto_show']:
        showFigure()
    return plt
Exemplo n.º 39
0
def showMap(map, spec='', **kwargs):
    """A convenient function that can be used to visualize Hi-C contact map. 
    *kwargs* will be passed to :func:`matplotlib.pyplot.imshow`.

    :arg map: a Hi-C contact map.
    :type map: :class:`numpy.ndarray`

    :arg spec: a string specifies how to preprocess the matrix. Blank for no preprocessing,
    'p' for showing only data from *p*-th to *100-p*-th percentile. '_' is to suppress 
    creating a new figure and paint to the current one instead. The letter specifications 
    can be applied sequentially, e.g. 'p_'.
    :type spec: str

    :arg p: specifies the percentile threshold.
    :type p: double
    """

    assert isinstance(map, np.ndarray), 'map must be a numpy.ndarray.'

    from matplotlib.pyplot import figure, imshow

    if not '_' in spec:
        figure()

    if 'p' in spec:
        p = kwargs.pop('p', 5)
        lp = kwargs.pop('lp', p)
        hp = kwargs.pop('hp', 100 - p)
        vmin = np.percentile(map, lp)
        vmax = np.percentile(map, hp)
    else:
        vmin = vmax = None

    im = imshow(map, vmin=vmin, vmax=vmax, **kwargs)

    if SETTINGS['auto_show']:
        showFigure()

    return im
Exemplo n.º 40
0
def showFractVars(modes, *args, **kwargs):
    """Show fraction of variances using :func:`~matplotlib.pyplot.bar`.  Note
    that mode indices are incremented by 1."""

    import matplotlib.pyplot as plt
    if not isinstance(modes, (ModeSet, NMA)):
        raise TypeError('modes must be NMA, or ModeSet, not {0}'.format(
            type(modes)))

    fracts = calcFractVariance(modes)
    fracts = [(int(mode), fract) for mode, fract in zip(modes, fracts)]
    fracts = np.array(fracts)
    show = plt.bar(fracts[:, 0] + 0.5, fracts[:, 1], *args, **kwargs)
    axis = list(plt.axis())
    axis[0] = 0.5
    axis[2] = 0
    axis[3] = 1
    plt.axis(axis)
    plt.xlabel('Mode index')
    plt.ylabel('Fraction of variance')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 41
0
def showFractVars(modes, *args, **kwargs):
    """Show fraction of variances using :func:`~matplotlib.pyplot.bar`.  Note
    that mode indices are incremented by 1."""

    import matplotlib.pyplot as plt
    if not isinstance(modes, (ModeSet, NMA)):
        raise TypeError('modes must be NMA, or ModeSet, not {0}'
                        .format(type(modes)))

    fracts = calcFractVariance(modes)
    fracts = [(int(mode), fract) for mode, fract in zip(modes, fracts)]
    fracts = np.array(fracts)
    show = plt.bar(fracts[:,0]+0.5, fracts[:,1], *args, **kwargs)
    axis = list(plt.axis())
    axis[0] = 0.5
    axis[2] = 0
    axis[3] = 1
    plt.axis(axis)
    plt.xlabel('Mode index')
    plt.ylabel('Fraction of variance')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 42
0
def showCrossCorr(modes, *args, **kwargs):
    """Show cross-correlations using :func:`~matplotlib.pyplot.imshow`.  By
    default, *origin=lower* and *interpolation=bilinear* keyword  arguments
    are passed to this function, but user can overwrite these parameters.
    See also :func:`.calcCrossCorr`."""

    import matplotlib.pyplot as plt
    arange = np.arange(modes.numAtoms())
    cross_correlations = np.zeros((arange[-1]+2, arange[-1]+2))
    cross_correlations[arange[0]+1:,
                       arange[0]+1:] = calcCrossCorr(modes)
    if not 'interpolation' in kwargs:
        kwargs['interpolation'] = 'bilinear'
    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
    show = plt.imshow(cross_correlations, *args, **kwargs), plt.colorbar()
    plt.axis([arange[0]+0.5, arange[-1]+1.5, arange[0]+0.5, arange[-1]+1.5])
    plt.title('Cross-correlations for {0}'.format(str(modes)))
    plt.xlabel('Indices')
    plt.ylabel('Indices')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 43
0
def showCrossCorr(modes, *args, **kwargs):
    """Show cross-correlations using :func:`~matplotlib.pyplot.imshow`.  By
    default, *origin=lower* and *interpolation=bilinear* keyword  arguments
    are passed to this function, but user can overwrite these parameters.
    See also :func:`.calcCrossCorr`."""

    import matplotlib.pyplot as plt
    arange = np.arange(modes.numAtoms())
    cross_correlations = np.zeros((arange[-1] + 2, arange[-1] + 2))
    cross_correlations[arange[0] + 1:, arange[0] + 1:] = calcCrossCorr(modes)
    if not 'interpolation' in kwargs:
        kwargs['interpolation'] = 'bilinear'
    if not 'origin' in kwargs:
        kwargs['origin'] = 'lower'
    show = plt.imshow(cross_correlations, *args, **kwargs), plt.colorbar()
    plt.axis(
        [arange[0] + 0.5, arange[-1] + 1.5, arange[0] + 0.5, arange[-1] + 1.5])
    plt.title('Cross-correlations for {0}'.format(str(modes)))
    plt.xlabel('Indices')
    plt.ylabel('Indices')
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 44
0
def showLinkage(V, **kwargs):
    """Shows the dendrogram of hierarchical clustering on *V*. See :func:`scipy.cluster.hierarchy.dendrogram` for details.

    :arg V: row-normalized eigenvectors for the purpose of clustering.
    :type V: :class:`numpy.ndarray`

    """

    V, _ = _getEigvecs(V, row_norm=True, remove_zero_rows=True)
    try:
        from scipy.cluster.hierarchy import linkage, dendrogram
    except ImportError:
        raise ImportError('Use of this function (showLinkage) requires the '
                          'installation of scipy.')
    
    method = kwargs.pop('method', 'single')
    metric = kwargs.pop('metric', 'euclidean')
    Z = linkage(V, method=method, metric=metric)

    no_labels = kwargs.pop('no_labels', True)
    dendrogram(Z, no_labels=no_labels, **kwargs)
    if SETTINGS['auto_show']:
        showFigure()
    return Z
Exemplo n.º 45
0
def showProtein(*atoms, **kwargs):
    """Show protein representation using :meth:`~mpl_toolkits.mplot3d.Axes3D`.
    This function is designed for generating a quick view of the contents of a
    :class:`~.AtomGroup` or :class:`~.Selection`.

    Protein atoms matching ``"calpha"`` selection are displayed using solid
    lines by picking a random and unique color per chain.  Line with can
    be adjusted using *lw* argument, e.g. ``lw=12``. Default width is 4.
    Chain colors can be overwritten using chain identifier as in ``A='green'``.

    Water molecule oxygen atoms are represented by red colored circles.  Color
    can be changed using *water* keyword argument, e.g. ``water='aqua'``.
    Water marker and size can be changed using *wmarker* and *wsize* keywords,
    defaults values are ``wmarker='.', wsize=6``.

    Hetero atoms matching ``"hetero and noh"`` selection are represented by
    circles and unique colors are picked at random on a per residue basis.
    Colors can be customized using residue name as in ``NAH='purple'``.  Note
    that this will color all distinct residues with the same name in the same
    color.  Hetero atom marker and size can be changed using *hmarker* and
    *hsize* keywords, default values are ``hmarker='o', hsize=6``.

    ProDy will set the size of axis so the representation is not distorted when
    the shape of figure window is close to a square.  Colors are picked at
    random, except for water oxygens which will always be colored red."""

    alist = atoms
    for atoms in alist:
        if not isinstance(atoms, Atomic):
            raise TypeError('atoms must be an Atomic instance')
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    cf = plt.gcf()
    show = None
    for child in cf.get_children():
        if isinstance(child, Axes3D):
            show = child
            break
    if show is None:
        show = Axes3D(cf)
    from matplotlib import colors
    cnames = dict(colors.cnames)
    wcolor = kwargs.get('water', 'red').lower()
    avoid = np.array(colors.hex2color(cnames.pop(wcolor, cnames.pop('red'))))
    for cn, val in cnames.items():  # PY3K: OK
        clr = np.array(colors.hex2color(val))
        if clr.sum() > 2.4:
            cnames.pop(cn)
        elif np.abs(avoid - clr).sum() <= 0.6:
            cnames.pop(cn)
    cnames = list(cnames)
    import random
    random.shuffle(cnames)
    min_ = list()
    max_ = list()
    for atoms in alist:
        if isinstance(atoms, AtomGroup):
            title = atoms.getTitle()
        else:
            title = atoms.getAtomGroup().getTitle()
        calpha = atoms.select('calpha')
        if calpha:
            for ch in HierView(calpha, chain=True):
                xyz = ch._getCoords()
                chid = ch.getChid()
                show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2],
                          label=title + '_' + chid,
                          color=kwargs.get(chid, cnames.pop()).lower(),
                          lw=kwargs.get('lw', 4))
        water = atoms.select('water and noh')
        if water:
            xyz = atoms.select('water')._getCoords()
            show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], label=title + '_water',
                      color=wcolor,
                      ls='None', marker=kwargs.get('wmarker', '.'),
                      ms=kwargs.get('wsize', 6))
        hetero = atoms.select('not protein and not nucleic and not water')
        if hetero:
            for res in HierView(hetero).iterResidues():
                xyz = res._getCoords()
                resname = res.getResname()
                resnum = str(res.getResnum())
                chid = res.getChid()
                show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], ls='None',
                          color=kwargs.get(resname, cnames.pop()).lower(),
                          label=title + '_' + chid + '_' + resname + resnum,
                          marker=kwargs.get('hmarker', 'o'),
                          ms=kwargs.get('hsize', 6))
        xyz = atoms._getCoords()
        min_.append(xyz.min(0))
        max_.append(xyz.max(0))

    show.set_xlabel('x')
    show.set_ylabel('y')
    show.set_zlabel('z')
    min_ = np.array(min_).min(0)
    max_ = np.array(max_).max(0)
    center = (max_ + min_) / 2
    half = (max_ - min_).max() / 2
    show.set_xlim3d(center[0]-half, center[0]+half)
    show.set_ylim3d(center[1]-half, center[1]+half)
    show.set_zlim3d(center[2]-half, center[2]+half)
    if kwargs.get('legend', False):
        show.legend(prop={'size': 10})
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 46
0
def showEllipsoid(modes, onto=None, n_std=2, scale=1., *args, **kwargs):
    """Show an ellipsoid using  :meth:`~mpl_toolkits.mplot3d.Axes3D
    .plot_wireframe`.

    Ellipsoid volume gives an analytical view of the conformational space that
    given modes describe.

    :arg modes: 3 modes for which ellipsoid will be drawn.
    :type modes: :class:`.ModeSet`, :class:`.PCA`, :class:`.ANM`, :class:`.NMA`

    :arg onto: 3 modes onto which ellipsoid will be projected.
    :type modes: :class:`.ModeSet`, :class:`.PCA`, :class:`.ANM`, :class:`.NMA`

    :arg n_std: Number of standard deviations to scale the ellipsoid.
    :type n_std: float

    :arg scale: Used for scaling the volume of ellipsoid. This can be
        obtained from :func:`.sampleModes`.
    :type scale: float"""

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be a NMA or ModeSet instance, '
                        'not {0}'.format(type(modes)))
    if not modes.is3d():
        raise ValueError('modes must be from a 3-dimensional model')
    if len(modes) != 3:
        raise ValueError('length of modes is not equal to 3')
    if onto is not None:
        if not isinstance(onto, (NMA, ModeSet)):
            raise TypeError('onto must be a NMA or ModeSet instance, '
                            'not {0}'.format(type(onto)))
        if not onto.is3d():
            raise ValueError('onto must be from a 3-dimensional model')
        if len(onto) != 3:
            raise ValueError('length of onto is not equal to 3')
        if onto.numAtoms() != modes.numAtoms():
            raise ValueError('modes and onto must have same number of atoms')

    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)

    var = modes.getVariances()
    #randn = np.random.standard_normal((1000, 3))
    #coef = ((randn ** 2 * var).sum(1) ** 0.5).mean()
    #scale=float(n_std)*modes.numAtoms()**.5 * float(rmsd) / coef * var **.5
    scale = float(n_std) * scale * var**0.5
    #scale=float(n_std)*modes.numAtoms()**.5*float(rmsd)/var.sum()**.5*var**.5

    x = scale[0] * np.outer(np.cos(u), np.sin(v))
    y = scale[1] * np.outer(np.sin(u), np.sin(v))
    z = scale[2] * np.outer(np.ones(np.size(u)), np.cos(v))
    if onto is not None:
        change_of_basis = np.dot(modes._getArray().T, onto._getArray())

        xyz = np.array([x.flatten(), y.flatten(), z.flatten()])
        xyz = np.dot(xyz.T, change_of_basis)
        x = xyz[:, 0].reshape((100, 100))
        y = xyz[:, 1].reshape((100, 100))
        z = xyz[:, 2].reshape((100, 100))

    cf = plt.gcf()
    show = None
    for child in cf.get_children():
        if isinstance(child, Axes3D):
            show = child
            break
    if show is None:
        show = Axes3D(cf)
    show.plot_wireframe(x, y, z, rstride=6, cstride=6, *args, **kwargs)
    if onto is not None:
        onto = list(onto)
        show.set_xlabel('Mode {0} coordinate'.format(int(onto[0]) + 1))
        show.set_ylabel('Mode {0} coordinate'.format(int(onto[1]) + 1))
        show.set_zlabel('Mode {0} coordinate'.format(int(onto[2]) + 1))
    else:
        modes = list(modes)
        show.set_xlabel('Mode {0} coordinate'.format(int(modes[0]) + 1))
        show.set_ylabel('Mode {0} coordinate'.format(int(modes[1]) + 1))
        show.set_zlabel('Mode {0} coordinate'.format(int(modes[2]) + 1))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 47
0
def showProtein(*atoms, **kwargs):
    """Show protein representation using :meth:`~mpl_toolkits.mplot3d.Axes3D`.
    This function is designed for generating a quick view of the contents of a
    :class:`~.AtomGroup` or :class:`~.Selection`.    

    Protein atoms matching ``"calpha"`` selection are displayed using solid
    lines by picking a random and unique color per chain.  Line with can
    be adjusted using *lw* argument, e.g. ``lw=12``. Default width is 4.
    Chain colors can be overwritten using chain identifier as in ``A='green'``.

    Water molecule oxygen atoms are represented by red colored circles.  Color
    can be changed using *water* keyword argument, e.g. ``water='aqua'``.
    Water marker and size can be changed using *wmarker* and *wsize* keywords,
    defaults values are ``wmarker='.', wsize=6``.

    Hetero atoms matching ``"hetero and noh"`` selection are represented by
    circles and unique colors are picked at random on a per residue basis.
    Colors can be customized using residue name as in ``NAH='purple'``.  Note
    that this will color all distinct residues with the same name in the same
    color.  Hetero atom marker and size can be changed using *hmarker* and
    *hsize* keywords, default values are ``hmarker='o', hsize=6``.

    ProDy will set the size of axis so the representation is not distorted when
    the shape of figure window is close to a square.  Colors are picked at
    random, except for water oxygens which will always be colored red.
    
    *** Interactive 3D Rendering in Jupyter Notebook ***
    
    If py3Dmol has been imported then it will be used instead to display 
    an interactive viewer.  See :func:`view3D`
    
    
    """

    from prody.dynamics.mode import Mode

    method = kwargs.pop('draw', None)
    modes = kwargs.get('mode', None)
    scale = kwargs.get('scale', 100)

    # modes need to be specifically a list or a tuple (cannot be an array)
    if modes is None:
        n_modes = 0
    else:
        modes = wrapModes(modes)
        n_modes = len(modes)

    if method is None:
        import sys        
        if 'py3Dmol' in sys.modules: 
            method = 'py3Dmol'
        else:
            method = 'matplotlib'
    method = method.lower()
        
    alist = atoms
    for atoms in alist:
        if not isinstance(atoms, Atomic):
            raise TypeError('atoms must be an Atomic instance')
            
    if n_modes and n_modes != len(alist):
        raise RuntimeError('the number of proteins ({0}) does not match that of the modes ({1}).'
                            .format(len(alist), n_modes))

    if '3dmol' in method:
        mol = view3D(*alist, **kwargs)
        return mol
    else:
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        cf = plt.gcf()
        show = None
        for child in cf.get_children():
            if isinstance(child, Axes3D):
                show = child
                break
        if show is None:
            show = Axes3D(cf)
        from matplotlib import colors
        cnames = dict(colors.cnames)
        wcolor = kwargs.get('water', 'red').lower()
        avoid = np.array(colors.hex2color(cnames.pop(wcolor, cnames.pop('red'))))
        for cn, val in cnames.copy().items():  # PY3K: OK
            clr = np.array(colors.hex2color(val))
            if clr.sum() > 2.4:
                cnames.pop(cn)
            elif np.abs(avoid - clr).sum() <= 0.6:
                cnames.pop(cn)
        cnames = list(cnames)
        import random
        random.shuffle(cnames)
        cnames_copy = list(cnames)
        min_ = list()
        max_ = list()
        for i, atoms in enumerate(alist):
            if isinstance(atoms, AtomGroup):
                title = atoms.getTitle()
            else:
                title = atoms.getAtomGroup().getTitle()
            calpha = atoms.select('calpha')
            if calpha:
                partition = False
                mode = modes[i] if n_modes else None
                if mode is not None:
                    is3d = False
                    try:
                        arr = mode.getArray()
                        is3d = mode.is3d()
                        n_nodes = mode.numAtoms()
                    except AttributeError:
                        arr = mode
                        is3d = len(arr) == len(calpha)*3
                        n_nodes = len(arr)//3 if is3d else len(arr)
                    if n_nodes != len(calpha):
                        raise RuntimeError('size mismatch between the protein ({0} residues) and the mode ({1} nodes).'
                                            .format(len(calpha), n_nodes))
                    partition = not is3d

                if partition:
                    xyz = calpha._getCoords()
                    chids = calpha.getChids()
                    rbody = []
                    last_sign = np.sign(arr[0])
                    last_chid = chids[0]
                    rcolor = ['red', 'red', 'blue']
                    n = 1
                    for i,a in enumerate(arr):
                        s = np.sign(a)
                        ch = chids[i]
                        if s == 0: s = last_sign
                        if last_sign != s or i == len(arr)-1 or last_chid != ch:
                            if last_chid == ch:
                                rbody.append(i)
                            show.plot(xyz[rbody, 0], xyz[rbody, 1], xyz[rbody, 2],
                                      label=title + '_regid%d'%n,
                                      color=rcolor[int(last_sign+1)],
                                      lw=kwargs.get('lw', 4))
                            rbody = []
                            n += 1
                            last_sign = s
                            last_chid = ch
                        rbody.append(i)
                else:
                    for ch in HierView(calpha, chain=True):
                        xyz = ch._getCoords()
                        chid = ch.getChid()
                        if len(cnames) == 0:
                            cnames = list(cnames_copy)
                        show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2],
                                label=title + '_' + chid,
                                color=kwargs.get(chid, cnames.pop()).lower(),
                                lw=kwargs.get('lw', 4))
                    
                    if mode is not None:
                        from prody.utilities.drawtools import drawArrow3D
                        XYZ = calpha._getCoords()
                        arr = arr.reshape((n_nodes, 3))
                        XYZ2 = XYZ + arr * scale
                        for i, xyz in enumerate(XYZ):
                            xyz2 = XYZ2[i]
                            mutation_scale = kwargs.pop('mutation_scale', 10)
                            drawArrow3D(xyz, xyz2, mutation_scale=mutation_scale, **kwargs)

            water = atoms.select('water and noh')
            if water:
                xyz = atoms.select('water')._getCoords()
                show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], label=title + '_water',
                          color=wcolor,
                          ls='None', marker=kwargs.get('wmarker', '.'),
                          ms=kwargs.get('wsize', 6))
            hetero = atoms.select('not protein and not nucleic and not water')
            if hetero:
                for res in HierView(hetero).iterResidues():
                    xyz = res._getCoords()
                    resname = res.getResname()
                    resnum = str(res.getResnum())
                    chid = res.getChid()
                    if len(cnames) == 0:
                        cnames = list(cnames_copy)
                    show.plot(xyz[:, 0], xyz[:, 1], xyz[:, 2], ls='None',
                              color=kwargs.get(resname, cnames.pop()).lower(),
                              label=title + '_' + chid + '_' + resname + resnum,
                              marker=kwargs.get('hmarker', 'o'),
                              ms=kwargs.get('hsize', 6))
            xyz = atoms._getCoords()
            min_.append(xyz.min(0))
            max_.append(xyz.max(0))

        show.set_xlabel('x')
        show.set_ylabel('y')
        show.set_zlabel('z')
        min_ = np.array(min_).min(0)
        max_ = np.array(max_).max(0)
        center = (max_ + min_) / 2
        half = (max_ - min_).max() / 2
        show.set_xlim3d(center[0]-half, center[0]+half)
        show.set_ylim3d(center[1]-half, center[1]+half)
        show.set_zlim3d(center[2]-half, center[2]+half)
        if kwargs.get('legend', False):
            show.legend(prop={'size': 10})
        if SETTINGS['auto_show']:
            showFigure()
        return show
Exemplo n.º 48
0
def showDomains(domains, linespec='-', **kwargs):
    """A convenient function that can be used to visualize Hi-C structural domains. 
    *kwargs* will be passed to :func:`matplotlib.pyplot.plot`.

    :arg domains: a 2D array of Hi-C domains, such as [[start1, end1], [start2, end2], ...].
    :type domains: :class:`numpy.ndarray`
    """

    fill_ends = kwargs.pop('fill_ends', 'close')
    domains = np.array(domains)
    shape = domains.shape

    if len(shape) == 1:
        # convert to domain list if labels are provided
        indicators = np.diff(domains)
        length = len(domains)
        if fill_ends in ['open', 'close']:
            indicators = np.append(1., indicators)
            indicators[-1] = 1
        elif fill_ends == 'skip':
            indicators = np.append(0., indicators)
        else:
            raise ValueError('invalid fill_ends mode: %s'%str(fill_ends))
        sites = np.where(indicators != 0)[0]
        starts = sites[:-1]
        ends = sites[1:]
        domains = np.array([starts, ends]).T
        consecutive = True
    elif len(shape) == 2:
        if domains.dtype == bool:
            length = domains.shape[1]
            domains_ = []
            for h in domains:
                start = None
                for i, b in enumerate(h):
                    if b:
                        if start is None:  # start
                            start = i
                    else:
                        if start is not None: # end
                            domains_.append([start, i-1])
                            start = None
                if start is not None:
                    domains_.append([start, i])
            domains = np.array(domains_)
        else:
            length = domains.max()
        consecutive = False
    else:
        raise ValueError('domains must be either one or two dimensions')

    from matplotlib.pyplot import figure, plot

    a = []; b = []
    lwd = kwargs.pop('linewidth', 1)
    lwd = kwargs.pop('lw', lwd)
    linewidth = np.abs(lwd)
    if fill_ends == 'open' and len(domains) == 1:
        domains = []

    for i in range(len(domains)):
        domain = domains[i]
        start = domain[0]; end = domain[1]
        if fill_ends == 'open' and start == 0:
            a.extend([end, end])
            b.extend([start, end])
        elif fill_ends == 'open' and end == length-1:
            a.extend([start, end])
            b.extend([start, start])
        else:
            a.extend([start, end, end])
            b.extend([start, start, end])

        if not consecutive:
            a.append(np.nan)
            b.append(np.nan)

    if lwd > 0:
        x = a; y = b
    else:
        x = b; y = a

    plt = plot(x, y, linespec, linewidth=linewidth, **kwargs)
    if SETTINGS['auto_show']:
        showFigure()
    return plt
Exemplo n.º 49
0
def showProjection(ensemble, modes, *args, **kwargs):
    """Show a projection of conformational deviations onto up to three normal
    modes from the same model.

    :arg ensemble: an ensemble, trajectory or a conformation for which
        deviation(s) will be projected, or a deformation vector
    :type ensemble: :class:`.Ensemble`, :class:`.Conformation`,
        :class:`.Vector`, :class:`.Trajectory`
    :arg modes: up to three normal modes
    :type modes: :class:`.Mode`, :class:`.ModeSet`, :class:`.NMA`
    :arg color: a color name or a list of color name, default is ``'blue'``
    :type color: str, list
    :arg label: label or a list of labels
    :type label: str, list
    :arg marker: a marker or a list of markers, default is ``'o'``
    :type marker: str, list
    :arg linestyle: line style, default is ``'None'``
    :type linestyle: str
    :arg text: list of text labels, one for each conformation
    :type text: list
    :arg fontsize: font size for text labels
    :type fontsize: int

    The projected values are by default converted to RMSD.  Pass ``rmsd=False``
    to use projection itself.

    Matplotlib function used for plotting depends on the number of modes:

      * 1 mode: :func:`~matplotlib.pyplot.hist`
      * 2 modes: :func:`~matplotlib.pyplot.plot`
      * 3 modes: :meth:`~mpl_toolkits.mplot3d.Axes3D.plot`"""

    import matplotlib.pyplot as plt

    projection = calcProjection(ensemble, modes, kwargs.pop('rmsd', True))

    if projection.ndim == 1 or projection.shape[1] == 1:
        show = plt.hist(projection.flatten(), *args, **kwargs)
        plt.xlabel('{0} coordinate'.format(str(modes)))
        plt.ylabel('Number of conformations')
        return show
    elif projection.shape[1] > 3:
        raise ValueError('Projection onto up to 3 modes can be shown. '
                         'You have given {0} mode.'.format(len(modes)))

    num = projection.shape[0]

    markers = kwargs.pop('marker', 'o')
    if isinstance(markers, str) or markers is None:
        markers = [markers] * num
    elif isinstance(markers, list):
        if len(markers) != num:
            raise ValueError('length of marker must be {0}'.format(num))
    else:
        raise TypeError('marker must be a string or a list')

    colors = kwargs.pop('color', 'blue')
    if isinstance(colors, str) or colors is None:
        colors = [colors] * num
    elif isinstance(colors, list):
        if len(colors) != num:
            raise ValueError('length of color must be {0}'.format(num))
    else:
        raise TypeError('color must be a string or a list')

    labels = kwargs.pop('label', None)
    if isinstance(labels, str) or labels is None:
        labels = [labels] * num
    elif isinstance(labels, list):
        if len(labels) != num:
            raise ValueError('length of label must be {0}'.format(num))
    elif labels is not None:
        raise TypeError('label must be a string or a list')

    kwargs['ls'] = kwargs.pop('linestyle', None) or kwargs.pop('ls', 'None')

    texts = kwargs.pop('text', None)
    if texts:
        if not isinstance(texts, list):
            raise TypeError('text must be a list')
        elif len(texts) != num:
            raise TypeError('length of text must be {0}'.format(num))
        size = kwargs.pop('fontsize', None) or kwargs.pop('size', None)

    modes = [m for m in modes]
    if len(modes) == 2:
        plot = plt.plot
        show = plt.gcf()
        text = plt.text
    else:
        from mpl_toolkits.mplot3d import Axes3D
        cf = plt.gcf()
        show = None
        for child in cf.get_children():
            if isinstance(child, Axes3D):
                show = child
                break
        if show is None:
            show = Axes3D(cf)
        plot = show.plot
        text = show.text

    indict = defaultdict(list)
    for i, opts in enumerate(zip(markers, colors, labels)):  # PY3K: OK
        indict[opts].append(i)

    args = list(args)
    for opts, indices in indict.items():  # PY3K: OK
        marker, color, label = opts
        kwargs['marker'] = marker
        kwargs['color'] = color
        if label:
            kwargs['label'] = label
        else:
            kwargs.pop('label', None)

        plot(*(list(projection[indices].T) + args), **kwargs)

    if texts:
        kwargs = {}
        if size:
            kwargs['size'] = size
        for args in zip(*(list(projection.T) + [texts])):
            text(*args, **kwargs)

    if len(modes) == 2:
        plt.xlabel('{0} coordinate'.format(int(modes[0])+1))
        plt.ylabel('{0} coordinate'.format(int(modes[1])+1))
    elif len(modes) == 3:
        show.set_xlabel('Mode {0} coordinate'.format(int(modes[0])+1))
        show.set_ylabel('Mode {0} coordinate'.format(int(modes[1])+1))
        show.set_zlabel('Mode {0} coordinate'.format(int(modes[2])+1))

    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 50
0
def showEmbedding(modes, labels=None, trace=True, headtail=True, cmap='prism'):
    """Visualizes Laplacian embedding of Hi-C data. 

    :arg modes: modes in which loci are embedded. It can only have 2 or 3 modes for the purpose 
    of visualization.
    :type modes: :class:`ModeSet`

    :arg labels: a list of integers indicating the segmentation of the sequence.
    :type labels: list

    :arg trace: if **True** then the trace of the sequence will be indicated by a grey dashed line.
    :type trace: bool

    :arg headtail: if **True** then a star and a closed circle will indicate the head and the tail 
    of the sequence respectively.
    :type headtail: bool

    :arg cmap: the color map used to render the *labels*.
    :type cmap: str
    """
    V, mask = _getEigvecs(modes, True)
    m,n = V.shape

    if labels is not None:
        if len(labels) != m:
            raise ValueError('Modes (%d) and the Hi-C map (%d) should have the same number'
                                ' of atoms. Turn off "masked" if you intended to apply the'
                                ' modes to the full map.'
                                %(m, len(labels)))
    if n > 3:
        raise ValueError('This function can only visualize the embedding of 2 or 3 modes.')
    
    from matplotlib.pyplot import figure, plot, scatter
    from mpl_toolkits.mplot3d import Axes3D

    if n == 2:
        la = importLA()

        X, Y = V[:,:2].T
        R = np.array(range(len(X)))
        R = R / la.norm(R)
        X *= R; Y *= R
        
        f = figure()
        if trace:
            plot(X, Y, ':', color=[0.3, 0.3, 0.3])
        if labels is None:
            C = 'b'
        else:
            C = labels
        scatter(X, Y, s=30, c=C, cmap=cmap)
        if headtail:
            plot(X[:1], Y[:1], 'k*', markersize=12)
            plot(X[-1:], Y[-1:], 'ko', markersize=12)
    elif n == 3:
        X, Y, Z = V[:,:3].T
        
        f = figure()
        ax = Axes3D(f)
        if trace:
            ax.plot(X, Y, Z, ':', color=[0.3, 0.3, 0.3])
        if labels is None:
            C = 'b'
        else:
            C = labels
        ax.scatter(X, Y, Z, s=30, c=C, depthshade=True, cmap=cmap)
        if headtail:
            ax.plot(X[:1], Y[:1], Z[:1], 'k*', markersize=12)
            ax.plot(X[-1:], Y[-1:], Z[-1:], 'ko', markersize=12)

    if SETTINGS['auto_show']:
        showFigure()
    return f
Exemplo n.º 51
0
def showProtein(*atoms, **kwargs):
    """Show protein representation using :meth:`~mpl_toolkits.mplot3d.Axes3D`.
    This function is designed for generating a quick view of the contents of a
    :class:`~.AtomGroup` or :class:`~.Selection`.    

    Protein atoms matching ``"calpha"`` selection are displayed using solid
    lines by picking a random and unique color per chain.  Line with can
    be adjusted using *lw* argument, e.g. ``lw=12``. Default width is 4.
    Chain colors can be overwritten using chain identifier as in ``A='green'``.

    Water molecule oxygen atoms are represented by red colored circles.  Color
    can be changed using *water* keyword argument, e.g. ``water='aqua'``.
    Water marker and size can be changed using *wmarker* and *wsize* keywords,
    defaults values are ``wmarker='.', wsize=6``.

    Hetero atoms matching ``"hetero and noh"`` selection are represented by
    circles and unique colors are picked at random on a per residue basis.
    Colors can be customized using residue name as in ``NAH='purple'``.  Note
    that this will color all distinct residues with the same name in the same
    color.  Hetero atom marker and size can be changed using *hmarker* and
    *hsize* keywords, default values are ``hmarker='o', hsize=6``.

    ProDy will set the size of axis so the representation is not distorted when
    the shape of figure window is close to a square.  Colors are picked at
    random, except for water oxygens which will always be colored red.
    
    *** Interactive 3D Rendering in Jupyter Notebook ***
    
    If py3Dmol has been imported then it will be used instead to display 
    an interactive viewer.  See :func:`view3D`
    
    
    """

    from prody.dynamics.mode import Mode

    method = kwargs.pop('draw', None)
    modes = kwargs.get('mode', None)
    scale = kwargs.get('scale', 100)

    # modes need to be specifically a list or a tuple (cannot be an array)
    if modes is None:
        n_modes = 0
    else:
        modes = wrapModes(modes)
        n_modes = len(modes)

    if method is None:
        import sys
        if 'py3Dmol' in sys.modules:
            method = 'py3Dmol'
        else:
            method = 'matplotlib'
    method = method.lower()

    alist = atoms
    for atoms in alist:
        if not isinstance(atoms, Atomic):
            raise TypeError('atoms must be an Atomic instance')

    if n_modes and n_modes != len(alist):
        raise RuntimeError(
            'the number of proteins ({0}) does not match that of the modes ({1}).'
            .format(len(alist), n_modes))

    if '3dmol' in method:
        mol = view3D(*alist, **kwargs)
        return mol
    else:
        kwargs.pop('mode', None)
        kwargs.pop('scale', 100)

        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        cf = plt.gcf()
        show = None
        for child in cf.get_children():
            if isinstance(child, Axes3D):
                show = child
                break
        if show is None:
            show = Axes3D(cf)
        from matplotlib import colors
        cnames = dict(colors.cnames)
        wcolor = kwargs.get('water', 'red').lower()
        avoid = np.array(
            colors.hex2color(cnames.pop(wcolor, cnames.pop('red'))))
        for cn, val in cnames.copy().items():  # PY3K: OK
            clr = np.array(colors.hex2color(val))
            if clr.sum() > 2.4:
                cnames.pop(cn)
            elif np.abs(avoid - clr).sum() <= 0.6:
                cnames.pop(cn)
        cnames = list(cnames)
        import random
        random.shuffle(cnames)
        cnames_copy = list(cnames)
        min_ = list()
        max_ = list()
        for i, atoms in enumerate(alist):
            if isinstance(atoms, AtomGroup):
                title = atoms.getTitle()
            else:
                title = atoms.getAtomGroup().getTitle()
            calpha = atoms.select('calpha')
            if calpha:
                partition = False
                mode = modes[i] if n_modes else None
                if mode is not None:
                    is3d = False
                    try:
                        arr = mode.getArray()
                        is3d = mode.is3d()
                        n_nodes = mode.numAtoms()
                    except AttributeError:
                        arr = mode
                        is3d = len(arr) == len(calpha) * 3
                        n_nodes = len(arr) // 3 if is3d else len(arr)
                    if n_nodes != len(calpha):
                        raise RuntimeError(
                            'size mismatch between the protein ({0} residues) and the mode ({1} nodes).'
                            .format(len(calpha), n_nodes))
                    partition = not is3d

                if partition:
                    xyz = calpha._getCoords()
                    chids = calpha.getChids()
                    rbody = []
                    last_sign = np.sign(arr[0])
                    last_chid = chids[0]
                    rcolor = ['red', 'red', 'blue']
                    n = 1
                    for i, a in enumerate(arr):
                        s = np.sign(a)
                        ch = chids[i]
                        if s == 0: s = last_sign
                        if last_sign != s or i == len(
                                arr) - 1 or last_chid != ch:
                            if last_chid == ch:
                                rbody.append(i)
                            show.plot(xyz[rbody, 0],
                                      xyz[rbody, 1],
                                      xyz[rbody, 2],
                                      label=title + '_regid%d' % n,
                                      color=rcolor[int(last_sign + 1)],
                                      lw=kwargs.get('lw', 4))
                            rbody = []
                            n += 1
                            last_sign = s
                            last_chid = ch
                        rbody.append(i)
                else:
                    for ch in HierView(calpha, chain=True):
                        xyz = ch._getCoords()
                        chid = ch.getChid()
                        if len(cnames) == 0:
                            cnames = list(cnames_copy)
                        show.plot(xyz[:, 0],
                                  xyz[:, 1],
                                  xyz[:, 2],
                                  label=title + '_' + chid,
                                  color=kwargs.get(chid, cnames.pop()).lower(),
                                  lw=kwargs.get('lw', 4))

                    if mode is not None:
                        from prody.utilities.drawtools import drawArrow3D
                        XYZ = calpha._getCoords()
                        arr = arr.reshape((n_nodes, 3))
                        XYZ2 = XYZ + arr * scale
                        for i, xyz in enumerate(XYZ):
                            xyz2 = XYZ2[i]
                            mutation_scale = kwargs.pop('mutation_scale', 10)
                            drawArrow3D(xyz,
                                        xyz2,
                                        mutation_scale=mutation_scale,
                                        **kwargs)

            water = atoms.select('water and noh')
            if water:
                xyz = atoms.select('water')._getCoords()
                show.plot(xyz[:, 0],
                          xyz[:, 1],
                          xyz[:, 2],
                          label=title + '_water',
                          color=wcolor,
                          ls='None',
                          marker=kwargs.get('wmarker', '.'),
                          ms=kwargs.get('wsize', 6))
            hetero = atoms.select(
                'not protein and not nucleic and not water and not dummy')
            if hetero:
                for res in HierView(hetero).iterResidues():
                    xyz = res._getCoords()
                    resname = res.getResname()
                    resnum = str(res.getResnum())
                    chid = res.getChid()
                    if len(cnames) == 0:
                        cnames = list(cnames_copy)
                    show.plot(xyz[:, 0],
                              xyz[:, 1],
                              xyz[:, 2],
                              ls='None',
                              color=kwargs.get(resname, cnames.pop()).lower(),
                              label=title + '_' + chid + '_' + resname +
                              resnum,
                              marker=kwargs.get('hmarker', 'o'),
                              ms=kwargs.get('hsize', 6))
            xyz = atoms._getCoords()
            min_.append(xyz.min(0))
            max_.append(xyz.max(0))

        show.set_xlabel('x')
        show.set_ylabel('y')
        show.set_zlabel('z')
        min_ = np.array(min_).min(0)
        max_ = np.array(max_).max(0)
        center = (max_ + min_) / 2
        half = (max_ - min_).max() / 2
        show.set_xlim3d(center[0] - half, center[0] + half)
        show.set_ylim3d(center[1] - half, center[1] + half)
        show.set_zlim3d(center[2] - half, center[2] + half)
        if kwargs.get('legend', False):
            show.legend(prop={'size': 10})
        if SETTINGS['auto_show']:
            showFigure()
        return show
Exemplo n.º 52
0
def showEmbedding(modes, labels=None, trace=True, headtail=True, cmap='prism'):
    """Visualizes Laplacian embedding of Hi-C data. 

    :arg modes: modes in which loci are embedded. It can only have 2 or 3 modes for the purpose 
    of visualization.
    :type modes: :class:`ModeSet`

    :arg labels: a list of integers indicating the segmentation of the sequence.
    :type labels: list

    :arg trace: if **True** then the trace of the sequence will be indicated by a grey dashed line.
    :type trace: bool

    :arg headtail: if **True** then a star and a closed circle will indicate the head and the tail 
    of the sequence respectively.
    :type headtail: bool

    :arg cmap: the color map used to render the *labels*.
    :type cmap: str
    """
    V, _ = _getEigvecs(modes, True)
    m, n = V.shape

    if labels is not None:
        if len(labels) != m:
            raise ValueError(
                'Modes (%d) and the Hi-C map (%d) should have the same number'
                ' of atoms. Turn off "masked" if you intended to apply the'
                ' modes to the full map.' % (m, len(labels)))
    if n > 3:
        raise ValueError(
            'This function can only visualize the embedding of 2 or 3 modes.')

    from matplotlib.pyplot import figure, plot, scatter
    from mpl_toolkits.mplot3d import Axes3D

    if n == 2:
        la = importLA()

        X, Y = V[:, :2].T
        R = np.array(range(len(X)))
        R = R / la.norm(R)
        X *= R
        Y *= R

        f = figure()
        if trace:
            plot(X, Y, ':', color=[0.3, 0.3, 0.3])
        if labels is None:
            C = 'b'
        else:
            C = labels
        scatter(X, Y, s=30, c=C, cmap=cmap)
        if headtail:
            plot(X[:1], Y[:1], 'k*', markersize=12)
            plot(X[-1:], Y[-1:], 'ko', markersize=12)
    elif n == 3:
        X, Y, Z = V[:, :3].T

        f = figure()
        ax = Axes3D(f)
        if trace:
            ax.plot(X, Y, Z, ':', color=[0.3, 0.3, 0.3])
        if labels is None:
            C = 'b'
        else:
            C = labels
        ax.scatter(X, Y, Z, s=30, c=C, depthshade=True, cmap=cmap)
        if headtail:
            ax.plot(X[:1], Y[:1], Z[:1], 'k*', markersize=12)
            ax.plot(X[-1:], Y[-1:], Z[-1:], 'ko', markersize=12)

    if SETTINGS['auto_show']:
        showFigure()
    return f
Exemplo n.º 53
0
def showCrossProjection(ensemble, mode_x, mode_y, scale=None, *args, **kwargs):
    """Show a projection of conformational deviations onto modes from
    different models using :func:`~matplotlib.pyplot.plot`.  This function
    differs from :func:`.showProjection` by accepting modes from two different
    models.

    :arg ensemble: an ensemble or a conformation for which deviation(s) will be
        projected, or a deformation vector
    :type ensemble: :class:`.Ensemble`, :class:`.Conformation`,
        :class:`.Vector`, :class:`.Trajectory`
    :arg mode_x: projection onto this mode will be shown along x-axis
    :type mode_x: :class:`.Mode`, :class:`.Vector`
    :arg mode_y: projection onto this mode will be shown along y-axis
    :type mode_y: :class:`.Mode`, :class:`.Vector`
    :arg scale: scale width of the projection onto mode ``x`` or ``y``,
        best scaling factor will be calculated and printed on the console,
        absolute value of scalar makes the with of two projection same,
        sign of scalar makes the projections yield a positive correlation
    :type scale: str
    :arg scalar: scalar factor for projection onto selected mode
    :type scalar: float
    :arg color: a color name or a list of color name, default is ``'blue'``
    :type color: str, list
    :arg label: label or a list of labels
    :type label: str, list
    :arg marker: a marker or a list of markers, default is ``'o'``
    :type marker: str, list
    :arg linestyle: line style, default is ``'None'``
    :type linestyle: str
    :arg text: list of text labels, one for each conformation
    :type text: list
    :arg fontsize: font size for text labels
    :type fontsize: int


    The projected values are by default converted to RMSD.  Pass ``rmsd=False``
    to calculate raw projection values.  See :ref:`pca-xray-plotting` for a
    more elaborate example."""

    import matplotlib.pyplot as plt

    xcoords, ycoords = calcCrossProjection(ensemble,
                                           mode_x,
                                           mode_y,
                                           scale=scale,
                                           **kwargs)

    num = len(xcoords)

    markers = kwargs.pop('marker', 'o')
    if isinstance(markers, str) or markers is None:
        markers = [markers] * num
    elif isinstance(markers, list):
        if len(markers) != num:
            raise ValueError('length of marker must be {0}'.format(num))
    else:
        raise TypeError('marker must be a string or a list')

    colors = kwargs.pop('color', 'blue')
    if isinstance(colors, str) or colors is None:
        colors = [colors] * num
    elif isinstance(colors, list):
        if len(colors) != num:
            raise ValueError('length of color must be {0}'.format(num))
    else:
        raise TypeError('color must be a string or a list')

    labels = kwargs.pop('label', None)
    if isinstance(labels, str) or labels is None:
        labels = [labels] * num
    elif isinstance(labels, list):
        if len(labels) != num:
            raise ValueError('length of label must be {0}'.format(num))
    elif labels is not None:
        raise TypeError('label must be a string or a list')

    kwargs['ls'] = kwargs.pop('linestyle', None) or kwargs.pop('ls', 'None')

    texts = kwargs.pop('text', None)
    if texts:
        if not isinstance(texts, list):
            raise TypeError('text must be a list')
        elif len(texts) != num:
            raise TypeError('length of text must be {0}'.format(num))
        size = kwargs.pop('fontsize', None) or kwargs.pop('size', None)

    indict = defaultdict(list)
    for i, opts in enumerate(zip(markers, colors, labels)):  # PY3K: OK
        indict[opts].append(i)

    for opts, indices in indict.items():  # PY3K: OK
        marker, color, label = opts
        kwargs['marker'] = marker
        kwargs['color'] = color
        if label:
            kwargs['label'] = label
        else:
            kwargs.pop('label', None)
        show = plt.plot(xcoords[indices], ycoords[indices], *args, **kwargs)
    if texts:
        kwargs = {}
        if size:
            kwargs['size'] = size
        for x, y, t in zip(xcoords, ycoords, texts):
            plt.text(x, y, t, **kwargs)
    plt.xlabel('{0} coordinate'.format(mode_x))
    plt.ylabel('{0} coordinate'.format(mode_y))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 54
0
def showProtein(*atoms, **kwargs):
    """Show protein representation using :meth:`~mpl_toolkits.mplot3d.Axes3D`.
    This function is designed for generating a quick view of the contents of a
    :class:`~.AtomGroup` or :class:`~.Selection`.

    Protein atoms matching ``"calpha"`` selection are displayed using solid
    lines by picking a random and unique color per chain.  Line with can
    be adjusted using *lw* argument, e.g. ``lw=12``. Default width is 4.
    Chain colors can be overwritten using chain identifier as in ``A='green'``.

    Water molecule oxygen atoms are represented by red colored circles.  Color
    can be changed using *water* keyword argument, e.g. ``water='aqua'``.
    Water marker and size can be changed using *wmarker* and *wsize* keywords,
    defaults values are ``wmarker='.', wsize=6``.

    Hetero atoms matching ``"hetero and noh"`` selection are represented by
    circles and unique colors are picked at random on a per residue basis.
    Colors can be customized using residue name as in ``NAH='purple'``.  Note
    that this will color all distinct residues with the same name in the same
    color.  Hetero atom marker and size can be changed using *hmarker* and
    *hsize* keywords, default values are ``hmarker='o', hsize=6``.

    ProDy will set the size of axis so the representation is not distorted when
    the shape of figure window is close to a square.  Colors are picked at
    random, except for water oxygens which will always be colored red."""

    alist = atoms
    for atoms in alist:
        if not isinstance(atoms, Atomic):
            raise TypeError('atoms must be an Atomic instance')
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    cf = plt.gcf()
    show = None
    for child in cf.get_children():
        if isinstance(child, Axes3D):
            show = child
            break
    if show is None:
        show = Axes3D(cf)
    from matplotlib import colors
    cnames = dict(colors.cnames)
    wcolor = kwargs.get('water', 'red').lower()
    avoid = np.array(colors.hex2color(cnames.pop(wcolor, cnames.pop('red'))))
    for cn, val in cnames.items():  # PY3K: OK
        clr = np.array(colors.hex2color(val))
        if clr.sum() > 2.4:
            cnames.pop(cn)
        elif np.abs(avoid - clr).sum() <= 0.6:
            cnames.pop(cn)
    cnames = list(cnames)
    import random
    random.shuffle(cnames)
    min_ = list()
    max_ = list()
    for atoms in alist:
        if isinstance(atoms, AtomGroup):
            title = atoms.getTitle()
        else:
            title = atoms.getAtomGroup().getTitle()
        calpha = atoms.select('calpha')
        if calpha:
            for ch in HierView(calpha, chain=True):
                xyz = ch._getCoords()
                chid = ch.getChid()
                show.plot(xyz[:, 0],
                          xyz[:, 1],
                          xyz[:, 2],
                          label=title + '_' + chid,
                          color=kwargs.get(chid, cnames.pop()).lower(),
                          lw=kwargs.get('lw', 4))
        water = atoms.select('water and noh')
        if water:
            xyz = atoms.select('water')._getCoords()
            show.plot(xyz[:, 0],
                      xyz[:, 1],
                      xyz[:, 2],
                      label=title + '_water',
                      color=wcolor,
                      ls='None',
                      marker=kwargs.get('wmarker', '.'),
                      ms=kwargs.get('wsize', 6))
        hetero = atoms.select('not protein and not nucleic and not water')
        if hetero:
            for res in HierView(hetero).iterResidues():
                xyz = res._getCoords()
                resname = res.getResname()
                resnum = str(res.getResnum())
                chid = res.getChid()
                show.plot(xyz[:, 0],
                          xyz[:, 1],
                          xyz[:, 2],
                          ls='None',
                          color=kwargs.get(resname, cnames.pop()).lower(),
                          label=title + '_' + chid + '_' + resname + resnum,
                          marker=kwargs.get('hmarker', 'o'),
                          ms=kwargs.get('hsize', 6))
        xyz = atoms._getCoords()
        min_.append(xyz.min(0))
        max_.append(xyz.max(0))

    show.set_xlabel('x')
    show.set_ylabel('y')
    show.set_zlabel('z')
    min_ = np.array(min_).min(0)
    max_ = np.array(max_).max(0)
    center = (max_ + min_) / 2
    half = (max_ - min_).max() / 2
    show.set_xlim3d(center[0] - half, center[0] + half)
    show.set_ylim3d(center[1] - half, center[1] + half)
    show.set_zlim3d(center[2] - half, center[2] + half)
    if kwargs.get('legend', False):
        show.legend(prop={'size': 10})
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 55
0
def showProjection(ensemble, modes, *args, **kwargs):
    """Show a projection of conformational deviations onto up to three normal
    modes from the same model.

    :arg ensemble: an ensemble, trajectory or a conformation for which
        deviation(s) will be projected, or a deformation vector
    :type ensemble: :class:`.Ensemble`, :class:`.Conformation`,
        :class:`.Vector`, :class:`.Trajectory`
    :arg modes: up to three normal modes
    :type modes: :class:`.Mode`, :class:`.ModeSet`, :class:`.NMA`
    :arg color: a color name or a list of color name, default is ``'blue'``
    :type color: str, list
    :arg label: label or a list of labels
    :type label: str, list
    :arg marker: a marker or a list of markers, default is ``'o'``
    :type marker: str, list
    :arg linestyle: line style, default is ``'None'``
    :type linestyle: str
    :arg text: list of text labels, one for each conformation
    :type text: list
    :arg fontsize: font size for text labels
    :type fontsize: int

    The projected values are by default converted to RMSD.  Pass ``rmsd=False``
    to use projection itself.

    Matplotlib function used for plotting depends on the number of modes:

      * 1 mode: :func:`~matplotlib.pyplot.hist`
      * 2 modes: :func:`~matplotlib.pyplot.plot`
      * 3 modes: :meth:`~mpl_toolkits.mplot3d.Axes3D.plot`"""

    import matplotlib.pyplot as plt

    projection = calcProjection(ensemble, modes, kwargs.pop('rmsd', True))

    if projection.ndim == 1 or projection.shape[1] == 1:
        show = plt.hist(projection.flatten(), *args, **kwargs)
        plt.xlabel('{0} coordinate'.format(str(modes)))
        plt.ylabel('Number of conformations')
        return show
    elif projection.shape[1] > 3:
        raise ValueError('Projection onto up to 3 modes can be shown. '
                         'You have given {0} mode.'.format(len(modes)))

    num = projection.shape[0]

    markers = kwargs.pop('marker', 'o')
    if isinstance(markers, str) or markers is None:
        markers = [markers] * num
    elif isinstance(markers, list):
        if len(markers) != num:
            raise ValueError('length of marker must be {0}'.format(num))
    else:
        raise TypeError('marker must be a string or a list')

    colors = kwargs.pop('color', 'blue')
    if isinstance(colors, str) or colors is None:
        colors = [colors] * num
    elif isinstance(colors, list):
        if len(colors) != num:
            raise ValueError('length of color must be {0}'.format(num))
    else:
        raise TypeError('color must be a string or a list')

    labels = kwargs.pop('label', None)
    if isinstance(labels, str) or labels is None:
        labels = [labels] * num
    elif isinstance(labels, list):
        if len(labels) != num:
            raise ValueError('length of label must be {0}'.format(num))
    elif labels is not None:
        raise TypeError('label must be a string or a list')

    kwargs['ls'] = kwargs.pop('linestyle', None) or kwargs.pop('ls', 'None')

    texts = kwargs.pop('text', None)
    if texts:
        if not isinstance(texts, list):
            raise TypeError('text must be a list')
        elif len(texts) != num:
            raise TypeError('length of text must be {0}'.format(num))
        size = kwargs.pop('fontsize', None) or kwargs.pop('size', None)

    modes = [m for m in modes]
    if len(modes) == 2:
        plot = plt.plot
        show = plt.gcf()
        text = plt.text
    else:
        from mpl_toolkits.mplot3d import Axes3D
        cf = plt.gcf()
        show = None
        for child in cf.get_children():
            if isinstance(child, Axes3D):
                show = child
                break
        if show is None:
            show = Axes3D(cf)
        plot = show.plot
        text = show.text

    indict = defaultdict(list)
    for i, opts in enumerate(zip(markers, colors, labels)):  # PY3K: OK
        indict[opts].append(i)

    args = list(args)
    for opts, indices in indict.items():  # PY3K: OK
        marker, color, label = opts
        kwargs['marker'] = marker
        kwargs['color'] = color
        if label:
            kwargs['label'] = label
        else:
            kwargs.pop('label', None)

        plot(*(list(projection[indices].T) + args), **kwargs)

    if texts:
        kwargs = {}
        if size:
            kwargs['size'] = size
        for args in zip(*(list(projection.T) + [texts])):
            text(*args, **kwargs)

    if len(modes) == 2:
        plt.xlabel('{0} coordinate'.format(int(modes[0]) + 1))
        plt.ylabel('{0} coordinate'.format(int(modes[1]) + 1))
    elif len(modes) == 3:
        show.set_xlabel('Mode {0} coordinate'.format(int(modes[0]) + 1))
        show.set_ylabel('Mode {0} coordinate'.format(int(modes[1]) + 1))
        show.set_zlabel('Mode {0} coordinate'.format(int(modes[2]) + 1))

    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 56
0
def showEllipsoid(modes, onto=None, n_std=2, scale=1., *args, **kwargs):
    """Show an ellipsoid using  :meth:`~mpl_toolkits.mplot3d.Axes3D
    .plot_wireframe`.

    Ellipsoid volume gives an analytical view of the conformational space that
    given modes describe.

    :arg modes: 3 modes for which ellipsoid will be drawn.
    :type modes: :class:`.ModeSet`, :class:`.PCA`, :class:`.ANM`, :class:`.NMA`

    :arg onto: 3 modes onto which ellipsoid will be projected.
    :type modes: :class:`.ModeSet`, :class:`.PCA`, :class:`.ANM`, :class:`.NMA`

    :arg n_std: Number of standard deviations to scale the ellipsoid.
    :type n_std: float

    :arg scale: Used for scaling the volume of ellipsoid. This can be
        obtained from :func:`.sampleModes`.
    :type scale: float"""

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    if not isinstance(modes, (NMA, ModeSet)):
        raise TypeError('modes must be a NMA or ModeSet instance, '
                        'not {0}'.format(type(modes)))
    if not modes.is3d():
        raise ValueError('modes must be from a 3-dimensional model')
    if len(modes) != 3:
        raise ValueError('length of modes is not equal to 3')
    if onto is not None:
        if not isinstance(onto, (NMA, ModeSet)):
            raise TypeError('onto must be a NMA or ModeSet instance, '
                            'not {0}'.format(type(onto)))
        if not onto.is3d():
            raise ValueError('onto must be from a 3-dimensional model')
        if len(onto) != 3:
            raise ValueError('length of onto is not equal to 3')
        if onto.numAtoms() != modes.numAtoms():
            raise ValueError('modes and onto must have same number of atoms')

    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)


    var = modes.getVariances()
    #randn = np.random.standard_normal((1000, 3))
    #coef = ((randn ** 2 * var).sum(1) ** 0.5).mean()
    #scale=float(n_std)*modes.numAtoms()**.5 * float(rmsd) / coef * var **.5
    scale = float(n_std) * scale * var ** 0.5
    #scale=float(n_std)*modes.numAtoms()**.5*float(rmsd)/var.sum()**.5*var**.5

    x = scale[0] * np.outer(np.cos(u), np.sin(v))
    y = scale[1] * np.outer(np.sin(u), np.sin(v))
    z = scale[2] * np.outer(np.ones(np.size(u)), np.cos(v))
    if onto is not None:
        change_of_basis = np.dot(modes._getArray().T, onto._getArray())

        xyz = np.array([x.flatten(), y.flatten(), z.flatten()])
        xyz = np.dot(xyz.T, change_of_basis)
        x = xyz[:,0].reshape((100,100))
        y = xyz[:,1].reshape((100,100))
        z = xyz[:,2].reshape((100,100))

    cf = plt.gcf()
    show = None
    for child in cf.get_children():
        if isinstance(child, Axes3D):
            show = child
            break
    if show is None:
        show = Axes3D(cf)
    show.plot_wireframe(x, y, z, rstride=6, cstride=6, *args, **kwargs)
    if onto is not None:
        onto = list(onto)
        show.set_xlabel('Mode {0} coordinate'.format(int(onto[0])+1))
        show.set_ylabel('Mode {0} coordinate'.format(int(onto[1])+1))
        show.set_zlabel('Mode {0} coordinate'.format(int(onto[2])+1))
    else:
        modes = list(modes)
        show.set_xlabel('Mode {0} coordinate'.format(int(modes[0])+1))
        show.set_ylabel('Mode {0} coordinate'.format(int(modes[1])+1))
        show.set_zlabel('Mode {0} coordinate'.format(int(modes[2])+1))
    if SETTINGS['auto_show']:
        showFigure()
    return show
Exemplo n.º 57
0
def showCrossProjection(ensemble, mode_x, mode_y, scale=None, *args, **kwargs):
    """Show a projection of conformational deviations onto modes from
    different models using :func:`~matplotlib.pyplot.plot`.  This function
    differs from :func:`.showProjection` by accepting modes from two different
    models.

    :arg ensemble: an ensemble or a conformation for which deviation(s) will be
        projected, or a deformation vector
    :type ensemble: :class:`.Ensemble`, :class:`.Conformation`,
        :class:`.Vector`, :class:`.Trajectory`
    :arg mode_x: projection onto this mode will be shown along x-axis
    :type mode_x: :class:`.Mode`, :class:`.Vector`
    :arg mode_y: projection onto this mode will be shown along y-axis
    :type mode_y: :class:`.Mode`, :class:`.Vector`
    :arg scale: scale width of the projection onto mode ``x`` or ``y``,
        best scaling factor will be calculated and printed on the console,
        absolute value of scalar makes the with of two projection same,
        sign of scalar makes the projections yield a positive correlation
    :type scale: str
    :arg scalar: scalar factor for projection onto selected mode
    :type scalar: float
    :arg color: a color name or a list of color name, default is ``'blue'``
    :type color: str, list
    :arg label: label or a list of labels
    :type label: str, list
    :arg marker: a marker or a list of markers, default is ``'o'``
    :type marker: str, list
    :arg linestyle: line style, default is ``'None'``
    :type linestyle: str
    :arg text: list of text labels, one for each conformation
    :type text: list
    :arg fontsize: font size for text labels
    :type fontsize: int


    The projected values are by default converted to RMSD.  Pass ``rmsd=False``
    to calculate raw projection values.  See :ref:`pca-xray-plotting` for a
    more elaborate example."""

    import matplotlib.pyplot as plt

    xcoords, ycoords = calcCrossProjection(ensemble, mode_x, mode_y,
                                           scale=scale, **kwargs)

    num = len(xcoords)

    markers = kwargs.pop('marker', 'o')
    if isinstance(markers, str) or markers is None:
        markers = [markers] * num
    elif isinstance(markers, list):
        if len(markers) != num:
            raise ValueError('length of marker must be {0}'.format(num))
    else:
        raise TypeError('marker must be a string or a list')

    colors = kwargs.pop('color', 'blue')
    if isinstance(colors, str) or colors is None:
        colors = [colors] * num
    elif isinstance(colors, list):
        if len(colors) != num:
            raise ValueError('length of color must be {0}'.format(num))
    else:
        raise TypeError('color must be a string or a list')

    labels = kwargs.pop('label', None)
    if isinstance(labels, str) or labels is None:
        labels = [labels] * num
    elif isinstance(labels, list):
        if len(labels) != num:
            raise ValueError('length of label must be {0}'.format(num))
    elif labels is not None:
        raise TypeError('label must be a string or a list')

    kwargs['ls'] = kwargs.pop('linestyle', None) or kwargs.pop('ls', 'None')

    texts = kwargs.pop('text', None)
    if texts:
        if not isinstance(texts, list):
            raise TypeError('text must be a list')
        elif len(texts) != num:
            raise TypeError('length of text must be {0}'.format(num))
        size = kwargs.pop('fontsize', None) or kwargs.pop('size', None)

    indict = defaultdict(list)
    for i, opts in enumerate(zip(markers, colors, labels)):  # PY3K: OK
        indict[opts].append(i)

    for opts, indices in indict.items():  # PY3K: OK
        marker, color, label = opts
        kwargs['marker'] = marker
        kwargs['color'] = color
        if label:
            kwargs['label'] = label
        else:
            kwargs.pop('label', None)
        show = plt.plot(xcoords[indices], ycoords[indices], *args, **kwargs)
    if texts:
        kwargs = {}
        if size:
            kwargs['size'] = size
        for x, y, t in zip(xcoords, ycoords, texts):
            plt.text(x, y, t, **kwargs)
    plt.xlabel('{0} coordinate'.format(mode_x))
    plt.ylabel('{0} coordinate'.format(mode_y))
    if SETTINGS['auto_show']:
        showFigure()
    return show