def api_batch_profile(self): res = dict(profiles={}) # print self.request.arguments, type(self.request.arguments) def clb(dic): # print dic res["profiles"][dic["user"]] = dic arguments = tornado.escape.json_decode(self.get_argument("data")) for agent in arguments: if not db.user_exists(agent): print "*** user does not exist:", agent continue if self.request.method == "GET": p = profile(agent, [], self.request.path.split("/"), db.r, clb) p.get("") if self.request.method == "POST": p = profile(agent, arguments[agent].items(), db.r, clb) # print 'arguments', arguments[agent].items() p.post() self.finilize_call(res)
def main(): args = _parse_command_line_args() print(args) if args.mode == 'profile': profile.profile() else: test.test()
def main(dex): #ret = opaque_id("/mnt/test/01_ControlFlow/01_High/sanity_cf.apk") ret = opaque_id.opaque_id(dex) if not ret : return profile(".stdout") ret = opaque_location.opaque_locations(dex) print("location : " + str(ret)) # if not ret : # return dexfile(dex)
def main(dex): ''' Entry Point of deobfuscator [dex] : APK's path ''' ret = opaque_id.opaque_id(dex) if not ret : return profile(".stdout") ret = opaque_location.opaque_locations(dex) print("location : " + str(ret)) dexfile(dex)
def generate_masks_voronoi(self): with profile(): print 'generate_masks_voronoi' centers = [ c_hom(close.center()) for c_hom, close in zip(self.c_homs, self.closes) ] self.c_voronoi_facets = voronoi(centers, self.establishing.system, self.establishing.dims) mask_template = (self.establishing.resize( scale=self.canvas_scale).pipe(lambda x: np.zeros(x.shape[:2]))) homography_masks = [ mask_template.fill_poly(clip(map(c_hom, close.corners()), mask_template.corners()), color=1).erode(3) for c_hom, close in zip(self.c_homs, self.closes) ] self.c_masks = [ operate( lambda x, y: x * y, mask_template.fill_poly(clip(facet, mask_template.corners()), color=1), homography_mask) for facet, homography_mask in zip( self.c_voronoi_facets, homography_masks) ]
def __init__(self, filename=None, buffer=None, store_plaintext=False, features=None, feature_overrides=None, algorithms=None): """Primary class for all hashing and profiling modules. Keyword Arguments: filename -- Filename to evaluate. If buffer is not defined, this will open the file, otherwise it will use this value when building the profile buffer -- Contents to evaluate. store_plaintext -- Whether or not the plaintext should be included in the resulting output, this is useful for storing the content in a database. features -- List of features to use, None for all. feature_overrides -- Dictionary containing features and values to override the output of the module algorithms -- List of algorithms to use, None for all. """ self.buffer = buffer if filename and self.buffer is None: statinfo = os.stat(filename) size = statinfo.st_size with open(filename, 'rb') as f: self.buffer = f.read() if size >= MAX_SIZE: self.store_plaintext = False p = profile(filename=filename, buffer=self.buffer, store_plaintext=store_plaintext, modules=features, overrides=feature_overrides) self.result = p.profile.copy() h = hashes(buffer=self.buffer, modules=algorithms) self.result.update(h.__dict__)
def detail_transfer_stitch_pt_2(self, detail_transfer_blur_op, edge_blend_radius): with profile(): print 'detail_transfer_stitch_pt_2' canvas = (self.establishing.white_balance().normalize().resize( scale=self.canvas_scale)) images, full_masks, full_masks_blurred = zip( *self.detail_transfer_stitch_outputs) print 'computing outside mask' print 'step 1' outside_mask_blurred = sum_subimages(full_masks, canvas.system, canvas.dims) print 'step 2' outside_mask_blurred = outside_mask_blurred.pipe( lambda x: (x == 0).astype(float)) print 'step 3' outside_mask_blurred = outside_mask_blurred.blur(edge_blend_radius) print outside_mask_blurred.array.shape print full_masks_blurred[0].array.shape del full_masks # to save some memory print 'blending' self.detail_transfer_stitch_output = blend_subimages( (canvas, ) + images, (outside_mask_blurred, ) + full_masks_blurred, canvas.system, canvas.dims) return self.detail_transfer_stitch_output
def do_insert(): m = Monary() num_docs = NUM_BATCHES * BATCH_SIZE params = [MonaryParam( ma.masked_array(nprand.uniform(0, i + 1, num_docs), np.zeros(num_docs)), "x%d" % i) for i in range(5)] wc = WriteConcern(w=MONARY_W_DEFAULT) with profile("monary insert"): m.insert("monary_test", "collection", params, write_concern=wc)
def signup(self): system("clear") print("@@@ SnapQuick Registration page! ") connection = sqlite3.connect("../main/data_base.db") crsr = connection.cursor() crsr.execute("SELECT * FROM user") ans = crsr.fetchall() check = 0 t = 0 while not check: user_id = input("choose a user Id: ") for j in ans: if j[0] == user_id: print("Already Taken") t = 1 break if t: t = 0 else: check = 1 print("Available!") set_password = input("Enter Password: "******"First Name: ") lname = input("Last Name: ") gender = input("Gender: ") email_id = input("Email Id: ") phone_number = int(input("Phone Number: ")) sql_command = """INSERT INTO user VALUES (?,?,?,?,?,?,?);""" crsr.execute(sql_command, ( user_id, fname, lname, gender, email_id, phone_number, set_password, )) connection.commit() print("account succesfully Created !") profile().show_profile(entered_id)
def do_insert(): m = Monary() num_docs = NUM_BATCHES * BATCH_SIZE params = [ MonaryParam( ma.masked_array(nprand.uniform(0, i + 1, num_docs), np.zeros(num_docs)), "x%d" % i) for i in range(5) ] wc = WriteConcern(w=MONARY_W_DEFAULT) with profile("monary insert"): m.insert("monary_test", "collection", params, write_concern=wc)
def createprofile(name): print name.text try: profiles = cPickle.load(open('profilelist', 'r')) print profiles except: profiles = [] #print "did not load profiles" pass current = profile(name.text) load(current) profiles.append(current) cPickle.dump(profiles, open('profilelist', 'w'))
def do_monary_query(): with Monary("127.0.0.1") as m: with profile("monary query"): arrays = m.query( "monary_test", # database name "collection", # collection name {}, # query spec ["x1", "x2", "x3", "x4", "x5"], # field names ["float64"] * 5 # field types ) # prove that we did something... print(numpy.mean(arrays, axis=-1))
def do_pymongo_query(): c = pymongo.MongoClient() collection = c.monary_test.collection with profile("pymongo query"): num = collection.count() arrays = [ numpy.zeros(num) for i in range(5) ] fields = [ "x1", "x2", "x3", "x4", "x5" ] arrays_fields = list(zip(arrays, fields)) for i, record in enumerate(collection.find()): for array, field in arrays_fields: array[i] = record[field] # prove that we did something... print(numpy.mean(arrays, axis=-1))
def detail_transfer_stitch_pt_1(self, detail_transfer_blur_op, edge_blend_radius): with profile(): print 'detail_transfer_stitch_pt_1' canvas = (self.establishing.white_balance().normalize().resize( scale=self.canvas_scale)) canvas_blurred = detail_transfer_blur_op(canvas.astype(np.float32)) # TODO: not being used # pool = multiprocessing.dummy.Pool() self.detail_transfer_stitch_outputs = map( self._detail_transfer_stitch_step, zip( repeat((canvas, canvas_blurred, detail_transfer_blur_op, edge_blend_radius)), self.closes, self.c_homs, self.c_masks)) print 'all details are transferred'
def do_pymongo_query(): c = pymongo.Connection("localhost") collection = c.monary_test.collection with profile("pymongo query"): num = collection.count() arrays = [numpy.zeros(num) for i in range(5)] fields = ["x1", "x2", "x3", "x4", "x5"] arrays_fields = zip(arrays, fields) for i, record in enumerate(collection.find()): for array, field in arrays_fields: array[i] = record[field] # prove that we did something... print numpy.mean(arrays, axis=-1)
def do_pymongo_query(): c = pymongo.Connection("localhost") collection = c.monary_test.collection with profile("pymongo query"): num = collection.count() arrays = [ numpy.zeros(num) for i in range(5) ] fields = [ "x1", "x2", "x3", "x4", "x5" ] arrays_fields = zip(arrays, fields) for i, record in enumerate(collection.find()): for array, field in arrays_fields: array[i] = record[field] for array in arrays: # prove that we did something... print numpy.mean(array)
def do_monary_block_query(): count = 0 sums = numpy.zeros((5, )) with Monary("127.0.0.1") as m: with profile("monary block query"): for arrays in m.block_query( "monary_test", # database name "collection", # collection name {}, # query spec ["x1", "x2", "x3", "x4", "x5"], # field names ["float64"] * 5, # field types block_size=32 * 1024, ): count += len(arrays[0]) sums += [numpy.sum(arr) for arr in arrays] print "visited %i items" % count print sums / count # prove that we did something...
def do_insert(): c = pymongo.MongoClient("localhost") collection = c.monary_test.collection num_docs = NUM_BATCHES * BATCH_SIZE arrays = [nprand.uniform(0, i + 1, num_docs) for i in xrange(5)] with profile("pymongo insert"): for i in xrange(NUM_BATCHES): stuff = [] for j in xrange(BATCH_SIZE): idx = i * BATCH_SIZE + j record = {"x1": arrays[0][idx], "x2": arrays[1][idx], "x3": arrays[2][idx], "x4": arrays[3][idx], "x5": arrays[4][idx]} stuff.append(record) collection.insert(stuff)
def do_monary_block_query(): count = 0 sums = numpy.zeros((5,)) with Monary("127.0.0.1") as m: with profile("monary block query"): for arrays in m.block_query( "monary_test", # database name "collection", # collection name {}, # query spec ["x1", "x2", "x3", "x4", "x5"], # field names ["float64"] * 5, # field types block_size=32 * 1024, ): count += len(arrays[0]) sums += [ numpy.sum(arr) for arr in arrays ] print "visited %i items" % count print sums / count # prove that we did something...
def do_insert(): NUM_BATCHES = 3500 BATCH_SIZE = 1000 # 3500 batches * 1000 per batch = 3.5 million records c = pymongo.Connection("localhost") collection = c.monary_test.collection with profile("insert"): for i in xrange(NUM_BATCHES): stuff = [] for j in xrange(BATCH_SIZE): record = dict(x1=random.uniform(0, 1), x2=random.uniform(0, 2), x3=random.uniform(0, 3), x4=random.uniform(0, 4), x5=random.uniform(0, 5)) stuff.append(record) collection.insert(stuff)
def do_insert(): c = pymongo.MongoClient("localhost") collection = c.monary_test.collection num_docs = NUM_BATCHES * BATCH_SIZE arrays = [nprand.uniform(0, i + 1, num_docs) for i in xrange(5)] with profile("pymongo insert"): for i in xrange(NUM_BATCHES): stuff = [] for j in xrange(BATCH_SIZE): idx = i * BATCH_SIZE + j record = { "x1": arrays[0][idx], "x2": arrays[1][idx], "x3": arrays[2][idx], "x4": arrays[3][idx], "x5": arrays[4][idx] } stuff.append(record) collection.insert(stuff)
def do_insert(): NUM_BATCHES = 3500 BATCH_SIZE = 1000 # 3500 batches * 1000 per batch = 3.5 million records c = pymongo.Connection("localhost") collection = c.monary_test.collection with profile("insert"): for i in xrange(NUM_BATCHES): stuff = [ ] for j in xrange(BATCH_SIZE): record = dict(x1=random.uniform(0, 1), x2=random.uniform(0, 2), x3=random.uniform(0, 3), x4=random.uniform(0, 4), x5=random.uniform(0, 5) ) stuff.append(record) collection.insert(stuff)
def do_insert(): NUM_BATCHES = 4500 BATCH_SIZE = 1000 # 4500 batches * 1000 per batch = 4.5 million records c = pymongo.MongoClient() collection = c.monary_test.collection with profile("insert"): for i in xrange(NUM_BATCHES): stuff = [] for j in xrange(BATCH_SIZE): record = dict(x1=random.uniform(0, 1), x2=random.uniform(0, 2), x3=random.uniform(0, 3), x4=random.uniform(0, 4), x5=random.uniform(0, 5)) stuff.append(record) collection.insert(stuff) print "Inserted %d records." % (NUM_BATCHES * BATCH_SIZE)
def do_insert(): NUM_BATCHES = 4500 BATCH_SIZE = 1000 # 4500 batches * 1000 per batch = 4.5 million records c = pymongo.MongoClient() collection = c.monary_test.collection with profile("insert"): for i in xrange(NUM_BATCHES): stuff = [ ] for j in xrange(BATCH_SIZE): record = dict(x1=random.uniform(0, 1), x2=random.uniform(0, 2), x3=random.uniform(0, 3), x4=random.uniform(0, 4), x5=random.uniform(0, 5) ) stuff.append(record) collection.insert(stuff) print "Inserted %d records." % (NUM_BATCHES * BATCH_SIZE)
def simple_stitch(self): with profile(): print 'simple_stitch' canvas = self.establishing.resize(scale=self.canvas_scale) def process(inputs): close, c_hom = inputs foreground, homography_mask = apply_homography( close, c_hom, canvas.system, canvas.dims) print 'processed' return foreground pool = multiprocessing.dummy.Pool() self.simple_stitch_outputs = pool.map( process, zip(self.closes, self.c_homs)) for foreground, mask in zip(self.simple_stitch_outputs, self.c_masks): composite(canvas, foreground, mask, inplace=True) self.simple_stitch_output = canvas return self.simple_stitch_output
def find_homographies(self, downsample_scale=0.5, num_threads=None): with profile(): print 'find_homographies' # This uses a thread pool (a dummy multiprocessing pool) to pipeline the # OpenCV work and take better advantage of multicore machines. pool = multiprocessing.dummy.Pool(processes=num_threads) self.e_features = find_features(self.establishing) c_features_results = [ pool.apply_async( lambda c: find_features( c.resize(scale=downsample_scale) if downsample_scale < 1 else c), (c, )) for c in self.closes ] self.c_homs = pool.map( lambda c_features_result: find_homography( c_features_result.get(), self.e_features), c_features_results) print self.c_homs self.c_features = [ c_features_result.get() for c_features_result in c_features_results ]
def generate_masks_stacked(self): with profile(): print 'generate_masks_stacked' self.calculate_areas() area_order = sorted(range(len(self.areas)), key=lambda i: self.areas[i]) mask_template = (self.establishing.resize( scale=self.canvas_scale).pipe(lambda x: np.zeros(x.shape[:2]))) available = mask_template.pipe(lambda x: x + 1) self.c_masks = [None] * len(self.closes) for i in area_order: c_hom, close = self.c_homs[i], self.closes[i] homography_boundary = map(c_hom, close.corners()) clipped_homography_boundary = clip(homography_boundary, mask_template.corners()) c_mask = (mask_template.fill_poly(clipped_homography_boundary, color=1).erode(3)) c_mask.array *= available.array c_mask = c_mask self.c_masks[i] = c_mask available.array -= c_mask.array
sim_mo_i=sim_Em+sim_Im+sim_noise_EIm #mock noisy data for collecting infected mosquitoes #pl.figure() #pl.plot(sim_Em+sim_Im, '-b', label='infected_m') #pl.plot(sim_noise_EIm,'g', label='noise') #pl.plot(sim_mo_i,'r', label='data_model_noise_weekly') #pl.legend() #pl.show() sim_adultm=sim_Sm+sim_Em+sim_Im #mock data for collecting adult mosquitoes sim_iem=sim_Im+sim_Em #mock data for collecting infected mosquitoes '''==============================calculate parmameter likelihood surface ==============================''' #making range list for parameter profiling dengue_profile=profile(opt_dengue.model, opt_param, opt_ini, time_step, 15, 80) param_name=['beta', 'repH', 'x', 'pi_mua', 'beta_m', 'mu_m'] #profile likelihood: ######################## for i in range(len(opt_param)): proflog={} param_adj_ls, param_fix_temp, param_test_ind = dengue_profile.fit_fix(i,0) #iterate through fixed parameter list if there are any for fix_ind in param_fix_temp: proflog_temp={} param_fix=[dengue_profile.param[x] for x in fix_ind] fit_ind=list(set(param_test_ind)-set(fix_ind)) #param_fit=[dengue_profile.param[p_f] for p_f in fit_ind]
def pf(): return str(make_page(user, logo, profile(user)))
def task(): profile.profile() shoppingMalls.shop() icon.icon()
def login(data_base): name=sign_in(data_base) id=data_base[name][0] if name==0: print(" ") else: start=time.time() while True: os.system('clear') print("\n===============================") print(" Welcome back: ",name) print("===============================\n") print("""Select from given options: 1. Profile 2. Bank Account 3. Games 4. Events 5. Memories 6. Settings 7. Help & Support 8. Log out""") choice=input() if choice in ['1','profile','Profile','PROFILE']: profile(data_base,name) elif choice in ['2','bankaccount','BankAccount','Bank Account','bank account','BANKACCOUNT']: bank_account(data_base,name) elif choice in ['3','games','Games','GAMES']: os.system('clear') user_game(data_base,id) elif choice in ['4','Events','events','EVENTS']: print('events') elif choice in ['5','memories','Memories','MEMORIES']: print('memories') elif choice in ['6','settings','Settings','SETTINGS']: name=change_detail(data_base,name) if name==0: break elif choice in ['7','Help&Support','help&support','Help & Support','help&support']: print('help') elif choice in ['8','Log out','Logout','logout','LOGOUT','log out']: os.system('clear') stop=time.time() t=stop-start db=pymysql.connect('localhost','nayan','1234','user_database') cursor=db.cursor() check=data_base[name][2] if check==None: data_base[name][2]=t cursor.execute('update data set usage_time=%s where username=%s',(t,name)) else: total_usage=t+check data_base[name][2]=total_usage cursor.execute('UPDATE data SET usage_time=%s WHERE username=%s',(total_usage,name)) db.commit() db.close() print('You have been successfully logged out') print('Login duration:',int(t),' seconds') break else: print("chose a valid option")
pl.figure() #pl.plot(opt_res[:,0],'b', label='SH') #pl.plot(opt_res[:,1],'r', label='EH') #pl.plot(opt_res[:,2],'g', label='IH') pl.plot(opt_res[:,3],'m', label='A') pl.plot(opt_res[:,4],'y', label='Sm') #pl.plot(opt_res[:,5],'k', label='Em') #pl.plot(opt_res[:,6],'c', label='Im') pl.legend() pl.show() #pl.savefig('temp_fig') ''' '''==============================calculate paried param likelihood surface ==============================''' dengue_profile=profile(opt_temp.model, opt_param, opt_ini, time_step, 10, 60) param_name=['beta', 'repH', 'x', 'pi_mua', 'beta_m', 'mu_m'] templs=dengue_profile.pert_level temp_ee=[(a,b) for a in range(len(opt_param)) for b in range(len(opt_param))] temp_ee2=[] for j,k in temp_ee: #drawing pairs temp_ele1=(j,k) temp_ele2=(k,j) if temp_ele2 not in temp_ee2 and j!=k: temp_ee2.append(temp_ele1) #print temp_ee2 for q,r in temp_ee2:
from BeautifulSoup import BeautifulSoup from urllib2 import urlopen from profile import profile import csv csv_file = open("email_list.csv", "w+") url = 'https://scrapebook22.appspot.com' response = urlopen(url).read() soup = BeautifulSoup(response) for link in soup.findAll("a"): if link.string == "See full profile": person_html = urlopen(url + link["href"]).read() person_soup = BeautifulSoup(person_html) profileData = person_soup.findAll("li") email = person_soup.find("span", attrs={"class": "email"}).string name = person_soup.find("div", attrs={"class": "col-md-8"}).h1.string city = person_soup.find("span", attrs={"data-city": True}).string profil = profile(email, name, city) csv_file.write(profil.to_csv() + "\n") csv_file.close()
async def profile_command(ctx, *args): response = profile.profile(ctx, args) if type(response) is discord.embeds.Embed: await ctx.send(" ", embed=response) elif type(response) is str: await ctx.send(response)
num_sync = log_sync(signature, db_path + "profile/") config["num_sync"] = num_sync # feel free to customize the repo name you want name = kernel["tvm_func_name"].replace("_kernel0", "") operator_path = db_path + op_type + "_db/" if not os.path.isdir(operator_path): os.mkdir(operator_path) with open(operator_path + name + ".json", "w+") as f: json.dump(config, f) with open(operator_path + name + ".cu", "w+") as f: f.write(new_code) default_tags = "" if (op_type == "Dot"): # Todo: move the transpose information into identifier default_tags += kernel["parameters"]["transpose_A"] * \ ",transA" + kernel["parameters"]["transpose_B"]*",transB" # apply rules that every 32 threads will be formed as a warp resource = math.ceil(prod(config["blockDim"]) / 32) * 32 * prod( config["gridDim"]) prepare_file(signature, kernel["code"], config, db_path + "profile/") profile_info = profile(signature, db_path + "profile/") print(profile_info, resource, config["num_sync"]) insert_db(operator_path + name, resource, tags=default_tags, profile=profile_info)
print( "Welcome to Aarush's Basketball Simulator, created in collaboration with Maanav Singh." ) print( "This simulator procedurally generates player profiles with statistics, which you can then pit together" ) print( "in 1v1 scenarios to determine who is the better basketball player. When you input 2, you will be asked how many players" ) print("you wish to generate. Any number can be inputted.") elif userInput == 2: print("How many players would you like to generate profiles for?") userInput = int(input()) playerArray = [] for _ in range(userInput): playerArray.append(profile()) printStats(playerArray) while (True): print( "Would you like to simulate next year? Respond 1 for yes and 2 for no") userInput = int(input()) if userInput == 1: for i in playerArray: i.incrementAge() i.updateStats() for k, v in i.getStats().items(): print(k, v) print("\n") else: break
model = pickle.load(f_un) with open("../data/cols.pkl") as f_un: events = pickle.load(f_un) df0 = pd.DataFrame(columns=events) s_mission = set(sign.columns) # find common model events in current mission for i in ['_std', '_md', '_min', '_max', '_cnt']: event_base = [ e.replace(i,'') for e in events if e.endswith(i)] mission_events = list(set(event_base) & s_mission) s1 = profile(sign, mission_events, os.sys.argv[1]) mission_events = list(set(events) & set(s1.columns)) sign = pd.concat([s1[mission_events],df0]) agg_filename = "../data/" + os.sys.argv[1] + "_agg.csv" sign.to_csv(agg_filename) X = sign[events].fillna(-9999999.) X = X.values preds = np.clip(np.round(model.predict(X)), 1, 5) print print
def MessageStatus(self, msg, status): if status == Skype4Py.cmsReceived or status == Skype4Py.cmsSent: # I have no idea what this line does other than it makes the bot respond to its own messages, and it only works in private chat #if not msg.Sender.Handle in self.blacklist: if msg.Body[0] == "!" and msg.Sender.Handle != "everythingbot": print "[" + str(datetime.now())[:-7] + "] " + msg.Sender.Handle + ": " + msg.Body # !help if re.match("!help(?!\S)", msg.Body): msg.Chat.SendMessage(help()) # !ping elif re.match("!ping(?!\S)", msg.Body): msg.Chat.SendMessage(ping()) # !members elif re.match("!members(?!\S)", msg.Body): msg.Chat.SendMessage(members(msg.Chat.Members)) # !profile elif re.match("!profile(?!\S)", msg.Body): try: skypeName = msg.Body[9:] msg.Chat.SendMessage(profile(skypeName, msg.Chat.Members)) except IndexError: msg.Chat.SendMessage("Skype username required for profile lookup.") # !orangecrush # If you're reading this on the Github repo, congratulations on being the first to figure out that it's been public all along. elif re.match("!orangecrush(?!\S)", msg.Body): msg.Chat.SendMessage("!orangecrush") # !lenny elif re.match("!lenny(?!\S)", msg.Body): msg.Chat.SendMessage(self._lenny) # !friendcodes elif re.match("!friendcodes(?!\S)", msg.Body) or re.match("!fc(?!\S)", msg.Body): msg.Chat.SendMessage(friendcodes()) # !gostats elif re.match("!gostats(?!\S)", msg.Body): msg.Chat.SendMessage("http://csgo-stats.com/" + msg.Body[9:]) # !tableflip elif re.match("!tableflip(?!\S)", msg.Body): msg.Chat.SendMessage(self._tableflip) # !tableset elif re.match("!tableset(?!\S)", msg.Body): msg.Chat.SendMessage(self._tableset) # !coinflip elif re.match("!coinflip(?!\S)", msg.Body): msg.Chat.SendMessage(coinflip()) # URL titles # This is the opt-into title code. #elif re.match("!title(?!\S)", msg.Body): # if re.match('!title http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', msg.Body, re.IGNORECASE): # url = re.search('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', msg.Body, re.IGNORECASE) # msg.Chat.SendMessage(url_get(url.group(0))) # else: # msg.Chat.SendMessage("Invalid URL.") # This is the opt-out of title code. elif re.search('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', msg.Body, re.IGNORECASE) and not re.search("!nt(?!\S)", msg.Body) and msg.Sender.Handle != "everythingbot": url = re.search('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', msg.Body, re.IGNORECASE) msg.Chat.SendMessage(url_get(url.group(0))) # !removebot elif re.match("!removebot(?!\S)", msg.Body): if removebot(msg.Sender.Handle): msg.Chat.Leave() # !restartbot elif re.match("!restartbot(?!\S)", msg.Body): if removebot(msg.Sender.Handle): msg.Chat.SendMessage("Restarting bot.") execfile("~halbrdbot.py") sys.exit() # !twitch (channel) # !gostats elif re.match("!twitch(?!\S)", msg.Body): # msg.Chat.SendMessage("http://twitch.tv/" + msg.Body[8:]) msg.Chat.SendMessage(twitch(msg.Body[8:])) # !requestfunction (string) #elif re.match("!requestfunction(?!\S)", msg.Body): # msg.Chat.SendMessage(requestfunction(msg.Sender.Handle, msg.Body[17:])) #elif msg.Body == "!chatname": # msg.Chat.SendMessage(msg.Chat.Name) # !hug elif re.match("!hug(?!\S)", msg.Body) and msg.Sender.Handle != "everythingbot": msg.Chat.SendMessage(hug(msg.Sender.FullName, msg.Body[5:])) # !bothug elif re.match("!bothug(?!\S)", msg.Body): msg.Chat.SendMessage(bothug(msg.Body[8:])) # !blacklist #elif re.match("!blacklist(?!\S)", msg.Body): # msg.Chat.SendMessage(blacklist(msg.Sender.Handle, msg.Body[11:])) # !strats elif re.match("!strats(?!\S)", msg.Body): msg.Chat.SendMessage(strats(msg.Body[8:])) # !lwc elif re.match("!lwc(?!\S)", msg.Body): msg.Chat.SendMessage("Literally who cares.\nhttp://lynq.me/lwc.mp4") # lmao # Keep this as the last thing that gets checked elif re.search("l+ *m+ *a+ *o+", msg.Body, re.IGNORECASE) and msg.Sender.Handle != "everythingbot": msg.Chat.SendMessage("ayyy")
def to_profile(self): """Converts the alignment to profile format""" prf = profile.profile(self.env) _modeller.mod_profile_from_aln(aln=self.modpt, prf=prf.modpt, libs=self.env.libs.modpt) return prf
return count def ones_mem(num): nib = 0 if num == 0: return INT_BITS_NIBBLE[0] nib = num & 0xf return INT_BITS_NIBBLE[nib] + ones_mem(num >> 4) if __name__ == '__main__': num = int(sys.argv[1]) try: itr = int(sys.argv[2]) except IndexError: itr = 1 try: method = int(sys.argv[3]) except IndexError: method = ones_1 if method == 1: method = ones_1 if method == 2: method = ones_mem for _ in xrange(itr): print "1s using : ", profile(method)(num)
def initUi(self): pf = profile.profile(self.parent) #로그아웃 버튼 logoutbtn = QPushButton() logoutbtn.setMaximumHeight(32) logoutbtn.setMaximumWidth(42) logoutbtn.setStyleSheet(''' QPushButton{image:url(./icon/logout.png); border: 0px; width:32px; height:42px} QPushButton:hover{background:rgba(0,0,0,0); border:0px} ''') alarm_groupbox = QGroupBox('안내설명') alarm_groupbox.setStyleSheet('font:9pt 나눔스퀘어라운드 Regular;') alarm_groupbox.setMinimumSize(300,170) empty = QLabel(" ") #강의 목록 그리기 setting_label = QLabel('개인 설정') setting_label.setStyleSheet("font: 16pt 나눔스퀘어라운드 Regular;background:#eef5f6;color:#42808a") #horizon_line = QLabel('─────────────────────') #구분선 horizon_line = QLabel() horizon_img = QPixmap('./ui/afterlogin_ui/horizon_line.png') horizon_img = horizon_img.scaled(310,12,QtCore.Qt.KeepAspectRatio,QtCore.Qt.FastTransformation) horizon_line.setPixmap(horizon_img) horizon_line.setAlignment(Qt.AlignTop) #사용 설명 self.use_explanation = QGridLayout() #useicon_list = QListWidget() # lecture = QLabel() # lecture_img = QPixmap('./ui/afterlogin_ui/list.png') # lecture_img = lecture_img.scaled(100,100 , QtCore.Qt.KeepAspectRatio, QtCore.Qt.FastTransformation) # lecture.setPixmap(lecture_img) lecture = QPushButton() lecture.setStyleSheet(''' QPushButton{image:url(./ui/afterlogin_ui/list.png); border:0px; width:40px; height:40px} QPushButton:hover{background:#cce5e8; border:0px} ''') lecture.setFocusPolicy(Qt.NoFocus) lecture.clicked.connect(lambda: self.use_explain(0)) alarm = QPushButton() alarm.setStyleSheet(''' QPushButton{image:url(./ui/afterlogin_ui/alarm.png); border:0px; width:40px; height:40px} QPushButton:hover{background:#cce5e8; border:0px} ''') alarm.setFocusPolicy(Qt.NoFocus) alarm.clicked.connect(lambda:self.use_explain(1)) rank = QPushButton() rank.setStyleSheet(''' QPushButton{image:url(./ui/afterlogin_ui/trophy.png); border:0px; width:40px; height:40px} QPushButton:hover{background:#cce5e8; border:0px} ''') rank.setFocusPolicy(Qt.NoFocus) rank.clicked.connect(lambda:self.use_explain(2)) setting = QPushButton() setting.setStyleSheet(''' QPushButton{image:url(./ui/afterlogin_ui/setting.png); border:0px; width:40px; height:40px} QPushButton:hover{background:#cce5e8; border:0px} ''') setting.setFocusPolicy(Qt.NoFocus) setting.clicked.connect(lambda:self.use_explain(3)) self.use_explanation.addWidget(lecture,0,0) self.use_explanation.addWidget(alarm,0,1) self.use_explanation.addWidget(rank,1,0) self.use_explanation.addWidget(setting,1,1) alarm_widget_label = QLabel('알림 위젯') alarm_widget_label.setStyleSheet('font:9pt 나눔스퀘어라운드 Regular;') alarm_sound_label = QLabel('소리 기능') alarm_sound_label.setStyleSheet('font:9pt 나눔스퀘어라운드 Regular;') alarm_sound_label.setAlignment(Qt.AlignLeft) # 위젯 on/off 버튼 self.widget_on_off_button = QPushButton() self.widget_on_off_button.setMinimumHeight(50) self.widget_on_off_button.setMinimumWidth(50) self.widget_on_off_button.setFocusPolicy(Qt.NoFocus) self.widget_on_off_button.setStyleSheet(''' QPushButton{image:url(./icon/alarm_on.png); border:0px; width:50px; height:50px;} ''') self.widget_on_off_button_status = True self.widget_on_off_button.clicked.connect(self.widget_button_toggle) # 소리 on/off 버튼 self.sound_on_off_button = QPushButton() self.sound_on_off_button.setMinimumHeight(50) self.sound_on_off_button.setMinimumWidth(50) self.sound_on_off_button.setFocusPolicy(Qt.NoFocus) self.sound_on_off_button.setStyleSheet(''' QPushButton{image:url(./icon/alarm_on.png); border:0px; width:50px; height:50px;} ''') self.sound_on_off_button.setCheckable(True) self.sound_on_off_button_status = True self.sound_on_off_button.clicked.connect(self.sound_button_toggle) self.title.addWidget(setting_label) #self.title.addWidget(logoutbtn) # self.line.addWidget(alarm_widget_label) # self.line.addWidget(self.widget_on_off_button,alignment=(QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop)) # self.line.addWidget(alarm_sound_label) # self.line.addWidget(self.sound_on_off_button,alignment=(QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop)) # #self.line.addWidget(useicon_list) # self.line.addStretch(1) #alarm_groupbox.setLayout(self.line) alarm_groupbox.setLayout(self.use_explanation) self.mainLayout.addLayout(self.title) self.mainLayout.addWidget(horizon_line) self.mainLayout.addWidget(pf, alignment=QtCore.Qt.AlignCenter) self.mainLayout.addWidget(alarm_groupbox) self.mainLayout.addWidget(empty) self.mainLayout.addWidget(empty) self.mainLayout.addStretch(1)
for f in glob(os.path.join(os.path.dirname(__file__), 'mechmap_archive', options.archive, '*')): shutil.copy(f, outdir) from both import geos from profile import profile from mech import mechnml, mechinc, mechext from map import map, trymap if options.extfiles: mech = mechext else: mech = mechnml go = geos(tracerpath, smvpath) po = profile(profilepath) if not os.path.exists(convpath): if os.path.exists(os.path.join(os.path.dirname(__file__), convpath + '.csv')): convpath = os.path.join(os.path.dirname(__file__), convpath + '.csv') elif 'Y' == raw_input("Conversion path does not exist; type Y to create it or any other key to abort\n"): trymap(mech(mechpath), convpath, go) else: exit() mech_info = mechinc(mech(mechpath), convpath) cspec_info = go.cspec_info() tracer_info = go.tracer_info() profile_info = po.profile_info() try: mappings, nprof = map(mech(mechpath), convpath, go, po) except TypeError, err: