Exemplo n.º 1
0
def main():
    startup_prog, eval_program, place, config, _ = program.preprocess()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if config['Global']['checkpoints'] is not None:
        path = config['Global']['checkpoints']
    else:
        path = config['Global']['pretrain_weights']

    load_model(exe, eval_program, path)

    save_inference_dir = config['Global']['save_inference_dir']
    if not os.path.exists(save_inference_dir):
        os.makedirs(save_inference_dir)
    fluid.io.save_inference_model(dirname=save_inference_dir,
                                  feeded_var_names=feeded_var_names,
                                  main_program=eval_program,
                                  target_vars=target_vars,
                                  executor=exe,
                                  model_filename='model',
                                  params_filename='params')
    print("inference model saved in {}/model and {}/params".format(
        save_inference_dir, save_inference_dir))
    print("save success, output_name_list:", fetches_var_name)
Exemplo n.º 2
0
def main():
    startup_prog, eval_program, place, config, train_alg_type = program.preprocess()
    eval_build_outputs = program.build(
        config, eval_program, startup_prog, mode='test')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    init_model(config, eval_program, exe)

    if train_alg_type == 'det':
        eval_reader = reader_main(config=config, mode="eval")
        eval_info_dict = {'program':eval_program,\
            'reader':eval_reader,\
            'fetch_name_list':eval_fetch_name_list,\
            'fetch_varname_list':eval_fetch_varname_list}
        metrics = eval_det_run(exe, config, eval_info_dict, "eval")
        logger.info("Eval result: {}".format(metrics))
    else:
        reader_type = config['Global']['reader_yml']
        if "benchmark" not in reader_type:
            eval_reader = reader_main(config=config, mode="eval")
            eval_info_dict = {'program': eval_program, \
                              'reader': eval_reader, \
                              'fetch_name_list': eval_fetch_name_list, \
                              'fetch_varname_list': eval_fetch_varname_list}
            metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
            logger.info("Eval result: {}".format(metrics))
        else:
            eval_info_dict = {'program':eval_program,\
                'fetch_name_list':eval_fetch_name_list,\
                'fetch_varname_list':eval_fetch_varname_list}
            test_rec_benchmark(exe, config, eval_info_dict)
Exemplo n.º 3
0
def main():
    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

    startup_prog, eval_program, place, config, alg_type = program.preprocess()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)

    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    eval_program = quant_aware(
        eval_program, place, quant_config, scope=None, for_test=True)

    init_model(config, eval_program, exe)

    # 2. Convert the program before save inference program
    #    The dtype of eval_program's weights is float32, but in int8 range.

    eval_program = convert(eval_program, place, quant_config, scope=None)

    eval_fetch_name_list = fetches_var_name
    eval_fetch_varname_list = [v.name for v in target_vars]
    eval_reader = reader_main(config=config, mode="eval")
    quant_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg_type == 'det':
        final_metrics = eval_det_run(exe, config, quant_info_dict, "eval")
    else:
        final_metrics = eval_rec_run(exe, config, quant_info_dict, "eval")
    print(final_metrics)

    # 3. Save inference model
    model_path = "./quant_model"
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

    fluid.io.save_inference_model(
        dirname=model_path,
        feeded_var_names=feeded_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=eval_program,
        model_filename=model_path + '/model',
        params_filename=model_path + '/params')
    print("model saved as {}".format(model_path))