Exemplo n.º 1
0
    def keep_required(self, data_required):
        """
            This method drop data with missing keys
        """
        index_list = list()
        print('')
        progress_bar = 'Suppression des produits avec données manquantes :'
        progress_bar = FillingCirclesBar(progress_bar, max=len(self.data))
        for i, dictionary in enumerate(self.data):
            try:
                for required in data_required:
                    key = required['name']
                    required = required['required']

                    # Check if the data have the required keys
                    if required and key not in dictionary:
                        raise KeyError
                    # Check if the required data are not null
                    if required and not dictionary[key]:
                        raise KeyError

            except KeyError:
                # Save the data's index if there is a key error
                index_list.append(i)
            progress_bar.next()
        progress_bar.finish()

        index_list.reverse()

        # Delete all datas with a key error
        for index in index_list:
            self.data.pop(index)
Exemplo n.º 2
0
    def format_data(self, data_format):
        """
            This method format the data to the required format for the database
        """
        print('')
        progress_bar = 'Mise en forme des données :'
        progress_bar = FillingCirclesBar(progress_bar, max=len(self.data))
        for i, dictionary in enumerate(self.data):
            for key_format in data_format:
                key = key_format['name']
                if key in dictionary:
                    data_type = key_format['type']
                    if data_type == str:
                        dictionary[key] = str(dictionary[key])
                        if 'length' in key_format:
                            length = key_format['length']
                            dictionary[key] = dictionary[key][:length]
                    elif data_type == int:
                        dictionary[key] = int(dictionary[key])
                    elif data_type == list:
                        dictionary[key] = self.string_to_list(dictionary[key])

                self.data[i] = dictionary
            progress_bar.next()
        progress_bar.finish()
Exemplo n.º 3
0
    def download_products(self, categories, page_size, pages):
        """
            Download products in temp json files
        """

        self.categories = categories
        self.page_size = page_size
        self.pages = pages

        # Download each category
        for category in self.categories:
            try:
                dir_path = path.join(self.tmp_dir, category)
                mkdir(dir_path)
            except FileExistsError:
                print(f'Le répertoire "{dir_path}" existe déjà')

            # Headers for the request see : https://en.wiki.openfoodfacts.org/API/Read/Search
            headers = {
                'User-agent':
                'Pur Beurre Substitute - Mac OS X 10.13 - Version 1.0'
            }

            # A progress bar for seeing the application working
            print('')
            progress_bar = f'Téléchargement en cours de la catégorie "{category}" :'
            progress_bar = FillingCirclesBar(progress_bar, max=self.pages)
            for page in range(self.pages):
                # Parameters sent with te request
                parameters = {
                    'json': 1,
                    'page_size': self.page_size,
                    'page': (page + 1),
                    'tagtype_0': 'categories',
                    'tag_contains_0': 'contains',
                    'tag_0': category,
                    'action': 'process'
                }

                # File in wich data are saved
                file_name = f'{page}.json'
                file_path = path.join(dir_path, file_name)

                with open(file_path, 'w') as output_file:
                    try:
                        result = requests.get(self.url_base,
                                              params=parameters,
                                              headers=headers,
                                              stream=True)
                        result.raise_for_status()
                    except requests.HTTPError as err:
                        print(err)

                    # Write data in a json format
                    json.dump(result.json(), output_file, indent=4)
                progress_bar.next()
            progress_bar.finish()
Exemplo n.º 4
0
def main():
    arguments = docopt(__doc__, version=__version__)

    client = Socrata(arguments['<site>'], arguments['-a'])

    try:
        if arguments['ls']:
            datasets = list_datasets(client, arguments['<site>'])
            print(tabulate(datasets, headers='keys', tablefmt='psql'))
        elif arguments['insert']:
            dataset_id = arguments['<dataset_id>']
            metadata = client.get_metadata(dataset_id)

            engine, session, geo = get_connection(arguments['-d'], metadata)
            Binding = get_binding(client, dataset_id, metadata, geo,
                                  arguments['-t'])

            # Create the table
            try:
                Binding.__table__.create(engine)
            except ProgrammingError as e:
                # Catch these here because this is our first attempt to
                # actually use the DB
                if 'already exists' in str(e):
                    raise CLIError(
                        'Destination table already exists. Specify a new table'
                        ' name with -t.')
                raise CLIError('Error creating destination table: %s' % str(e))

            num_rows = get_row_count(client, dataset_id)
            bar = FillingCirclesBar('  ▶ Loading from API', max=num_rows)

            # Iterate the dataset and INSERT each page
            for page in get_dataset(client, dataset_id):
                to_insert = []
                for row in page:
                    to_insert.append(Binding(**parse_row(row, Binding)))

                session.add_all(to_insert)
                session.flush()
                bar.next(n=len(to_insert))

            bar.finish()

            ui.item(
                'Committing rows (this can take a bit for large datasets).')
            session.commit()

            success = 'Successfully imported %s rows from "%s".' % (
                num_rows, metadata['name'])
            ui.header(success, color='\033[92m')

        client.close()
    except CLIError as e:
        ui.header(str(e), color='\033[91m')
Exemplo n.º 5
0
def Pb6():
    from progress.bar import FillingCirclesBar
    import time

    bar = FillingCirclesBar('进度条6', max=100)  #max的值100,可调节

    for i in range(100):  #这个也需要适当调节
        bar.next()
        time.sleep(0.1)  #延迟时间,可调节,0.1~1之间最佳

    bar.finish()
Exemplo n.º 6
0
 def generate_simple(data_name, count, klass, *args):
     """
         Generate data with a simple loop
     """
     progress_bar = f'Create {data_name}'
     progress_bar = FillingCirclesBar(progress_bar, max=count)
     i = 0
     while i < count:
         i += 1
         klass(LANG_CODE, *args)
         progress_bar.next()
     progress_bar.finish()
Exemplo n.º 7
0
def make_video(params_file='output/params.txt',
               phi_file='output/phi.txt',
               x_file='output/x.txt',
               gifname='movie.gif',
               duration=0.1,
               xkcd=False):
    params = get_params(params_file)
    phi_array = np.loadtxt(phi_file)
    x_array = np.loadtxt(x_file)
    solution = {'u': phi_array, 'x': x_array}
    step = int(0.01 / params['dt'])
    bar = FillingCirclesBar('Loading',
                            suffix='%(percent)d%%',
                            max=int((params['steps'] - 1) / step))
    images = []
    figsize = (6, 6)
    for subplot in range(1, int(params['steps']), step):
        if xkcd:
            plt.rcParams['text.usetex'] = False
            plt.xkcd()
        fig = plt.figure(figsize=figsize)
        ax = plt.subplot(1, 1, 1)
        plt.sca(ax)
        plt.plot(solution['x'],
                 solution['u'][subplot - 1, :],
                 c='#F61067',
                 lw=3.5)
        plt.ylim(-1.5 * params['eta'], 1.5 * params['eta'])
        if xkcd:
            plt.xlabel(r'x')
            plt.ylabel(r'u(x, t)')
        else:
            plt.xlabel(r'$x$')
            plt.ylabel(r'$\phi(x, t)$')
        plt.title('t = {:.2f}s'.format((subplot - 1) * params['dt']))
        if subplot > 1:
            plt.axis(axis)
        if subplot == 1:
            axis = plt.axis()
        filename = 'temp.png'
        plt.savefig(filename)
        plt.close()
        images.append(Image.open(filename))
        os.remove(filename)
        bar.next()
    bar.finish()
    print('', end='\r\r')
    if xkcd:
        imageio.mimsave('xkcd_' + gifname, images, duration=duration)
    else:
        imageio.mimsave(gifname, images, duration=duration)
Exemplo n.º 8
0
def progressbar(title):
    # for i in range(21):
    #     sys.stdout.write('\r')
    #     # the exact output you're looking for:
    #     sys.stdout.write("[%-20s] %d%%" % ('='*i, 5*i))
    #     sys.stdout.flush()
    #     sleep(0.05)
    text = colored(str(title), 'red', attrs=['reverse', 'blink'])
    print(text)
    bar = FillingCirclesBar('Processing', max=100)
    for i in range(100):
        # Do some work
        sleep(0.025)
        bar.next()
    bar.finish()
Exemplo n.º 9
0
 def generate_complex_while(data_name, count, parents, klass, *args):
     """
         Generate data with a for and a while loops
     """
     count_min, count_max = count
     progress_bar = f'Create {data_name}'
     progress_bar = FillingCirclesBar(progress_bar, max=len(parents))
     for parent in parents:
         child_count = randrange(count_min, count_max)
         i = 0
         while i < child_count:
             i += 1
             klass(LANG_CODE, parent, *args)
         progress_bar.next()
     progress_bar.finish()
Exemplo n.º 10
0
    def do_update(self, _):
        "***Actualiza las tools"
        data = dict()

        for x in [x.rstrip() for x in open("mirror.txt", "r").readlines()]:
            print(x)
            data.update(requests.get(x).json())

        bar = FillingCirclesBar('Actualizando', max=len(str(data)))
        for i in range(len(str(data))):
            with open('update.json', 'w') as upt:
                json.dump(data, upt)
                bar.next()
        bar.finish()
        self.requiere = json.loads(open("update.json", "r").read())
Exemplo n.º 11
0
 def random_status_history():
     """
         Create random history for status
     """
     progress_bar = 'Create status histories for the orders'
     progress_bar = FillingCirclesBar(progress_bar, max=len(Order.orders))
     for i, order in enumerate(Order.orders):
         history_count = randrange(0, (len(STATUS) - 1))
         j = 0
         while j < history_count:
             j += 1
             StatusHistory(order)
             Order.orders[i].random_date()
             Order.orders[i].random_status(Status.status)
         progress_bar.next()
     progress_bar.finish()
Exemplo n.º 12
0
 def generate_complex(data_name, lists, klass, *args, random_choice=False):
     """
         Generate data with a double for loop
     """
     parents, children = lists
     progress_bar = f'Create {data_name}'
     progress_bar = FillingCirclesBar(progress_bar, max=len(parents))
     for parent in parents:
         for child in children:
             if random_choice:
                 if choice([True, False]):
                     klass(parent, child, *args)
             else:
                 klass(parent, child, *args)
         progress_bar.next()
     progress_bar.finish()
Exemplo n.º 13
0
def process_items(items):
    processed_items = []
    index = 1
    number_of_items = len(items)
    progress_bar = FillingCirclesBar('Processing pages', max=number_of_items)

    for item in items:
        product_name = item.xpath('.//a[@class="productName product1Name"]/span')[0].text_content().strip()
        actual_price = item.xpath('.//div[@class="mm-price media__price"]')[0].text_content().strip()
        processed_item = {'name': product_name, 'price': Decimal(actual_price), 'reduced_price': None, 'discount': None}
        processed_items.append(processed_item)
        index = index + 1
        progress_bar.next()
    progress_bar.finish()

    return processed_items
Exemplo n.º 14
0
def search(inputlist, protein_seqs, tsvsalida):
    try:
        numerodominios = 0  #Inicializa el total de matches
        lineaalinea = pd.read_csv(protein_seqs, sep='\t')
        bar = FillingCirclesBar('Buscando dominios...',
                                max=len(inputlist['pattern']) *
                                (len(lineaalinea['qseqid']) + 1))
        with open(tsvsalida, 'a') as found:
            found.write('blast hit\tname\taccession\tdescription\tpattern\n')
            for j in range(len(lineaalinea['sseqid']) + 1):
                for k in range(len(inputlist['pattern'])):
                    #Para el query hago esto
                    if j == 0:
                        busca = inputlist.loc[k, 'pattern']
                        prosearch = lineaalinea.loc[1, 'qseq']
                        match = re.search(busca, prosearch, flags=re.I)
                        bar.next()
                        if match:
                            found.write( lineaalinea.loc[1,'qseqid']+'\t' \
                                        +inputlist.loc[k, 'name']+'\t' \
                                        +inputlist.loc[k, 'accession']+'\t' \
                                        +inputlist.loc[k, 'description']+'\t' \
                                               +inputlist.loc[k, 'pattern']+'\n')
                            numerodominios += 1

                    # Y esto lo hago para los multiples subjects
                    else:
                        busca = inputlist.loc[k, 'pattern']
                        prosearch = lineaalinea.loc[j - 1, 'sseq']
                        match = re.search(busca, prosearch, flags=re.I)
                        bar.next()
                        if match:
                            found.write( lineaalinea.loc[j-1,'sseqid']+'\t' \
                                        +inputlist.loc[k, 'name']+'\t' \
                                        +inputlist.loc[k, 'accession']+'\t' \
                                        +inputlist.loc[k, 'description']+'\t' \
                                               +inputlist.loc[k, 'pattern']+'\n')
                            numerodominios += 1

        found.close()
        bar.finish()
        return (numerodominios)
    except:
        print('Fallo al buscar dominios')
        pass
Exemplo n.º 15
0
def insert_source(source):
    '''
    Gets the connection and binding and inserts data.
    '''

    get_connection(source)

    if not isinstance(source, sc.CenPy):
        get_binding(source)

    if source.engine.dialect.has_table(source.engine, source.tbl_name):
        print()
        warnings.warn(("Destination table already exists. Current table " +
                       "will be dropped and replaced."))
        print()
        if not isinstance(source, sc.CenPy):
            source.binding.__table__.drop(source.engine)

    try:
        if not isinstance(source, sc.CenPy):
            source.binding.__table__.create(source.engine)
    except ProgrammingError as e:

        raise CLIError('Error creating destination table: %s' % str(e))

    circle_bar = FillingCirclesBar('  ▶ Loading from source',
                                   max=source.num_rows)

    source.insert(circle_bar)

    circle_bar.finish()

    ui.item('Committing rows (this can take a bit for large datasets).')
    source.session.commit()

    success = 'Successfully imported %s rows.' % (source.num_rows)
    ui.header(success, color='\033[92m')
    if source.name == "Socrata" and source.client:
        source.client.close()

    return
Exemplo n.º 16
0
def make_video(solution, gifname='movie.gif', duration=0.1, xkcd=False):
    params = solution.params
    step = int(0.01 / params['dt'])
    bar = FillingCirclesBar('Loading',
                            suffix='%(percent)d%%',
                            max=int((solution.steps - 1) / step))
    images = []
    figsize = (6, 6)
    for subplot in range(1, solution.steps, step):
        if xkcd:
            plt.rcParams['text.usetex'] = False
            plt.xkcd()
        fig = plt.figure(figsize=figsize)
        ax = plt.subplot(1, 1, 1)
        plt.sca(ax)
        plt.plot(solution.x, solution.u[subplot - 1, :], c='#F61067', lw=3.5)
        if xkcd:
            plt.xlabel(r'x')
            plt.ylabel(r'u(x, t)')
        else:
            plt.xlabel(r'$x$')
            plt.ylabel(r'$u(x, t)$')
        plt.title('t = {:.2f}s'.format(params['t0'] +
                                       (subplot - 1) * params['dt']))
        if subplot > 1:
            plt.axis(axis)
        if subplot == 1:
            axis = plt.axis()
        filename = 'temp.png'
        plt.savefig(filename)
        plt.close()
        images.append(Image.open(filename))
        os.remove(filename)
        bar.next()
    bar.finish()
    print('', end='\r\r')
    if xkcd:
        imageio.mimsave('xkcd_' + gifname, images, duration=duration)
    else:
        imageio.mimsave(gifname, images, duration=duration)
Exemplo n.º 17
0
def retrieve_domain_address():
    """ Performs DNS lookup on each domain """
    global SUBDOMAIN_LIST

    resolver = dns.resolver.Resolver()
    pop_list = []

    bar = FillingCirclesBar('[*] Resolving Domains', max=len(SUBDOMAIN_LIST))

    for i in range(len(SUBDOMAIN_LIST)):
        try:
            answers = resolver.resolve("%s" % SUBDOMAIN_LIST[i].name, "A")
            for response in answers:
                SUBDOMAIN_LIST[i].resolved_addresses.append(response.to_text())
        except dns.resolver.NoAnswer:
            pop_list.append(SUBDOMAIN_LIST[i])
        except dns.resolver.NXDOMAIN:
            pop_list.append(SUBDOMAIN_LIST[i])
        bar.next()
    bar.finish()

    SUBDOMAIN_LIST = adjust_list(pop_list)
Exemplo n.º 18
0
def plot_bar():

    # Method 0: Using \r to print
    def view_bar(num, sum, bar_title="Processing", bar_word="▓"):
        rate = num / sum
        rate_num = round(rate * 100)
        rest_num = 100 - rate_num
        print(("\r\033[1;32m" + bar_title + " \033[0m\033[1;35m|" + bar_word *
               rate_num + " " * rest_num + "| \033[0m\033[1;33m%3d%%\033[0m") %
              (rate_num),
              end="")
        if rate_num == 100: print("\n", end="")

    with open("plot_statistic.py", 'r') as file:
        lines = file.readlines()
        for _ in range(len(lines)):
            time.sleep(0.02)
            view_bar(_, len(lines) - 1)

    # Method 1: Using alive_progress <<<
    with alive_bar(100) as bar:
        for _ in range(100):
            bar()
            time.sleep(0.02)

    # Method 2: Using tqdm <<<
    with open("plot_statistic.py", 'r') as file:
        lines = file.readlines()
        for _ in tqdm(lines):
            time.sleep(0.02)

    # Methods 3: Using Progress <<<
    with open("plot_statistic.py", "r") as file:
        lines = file.readlines()
        # bar   = IncrementalBar('BarName', max = len(lines))
        # bar   = ChargingBar('BarName', max = len(lines))
        bar = FillingCirclesBar('BarName', max=len(lines))
        # bar   = ShadyBar('BarName', max = len(lines))
        for _ in lines:
            bar.next()
            time.sleep(0.02)
        bar.finish()

    with open("plot_statistic.py", "r") as file:
        lines = file.readlines()
        bar = ChargingBar('BarName', max=len(lines))
        for _ in lines:
            bar.next()
            time.sleep(0.02)
        bar.finish()

    with open("plot_statistic.py", "r") as file:
        lines = file.readlines()
        bar = ShadyBar('BarName', max=len(lines))
        for _ in lines:
            bar.next()
            time.sleep(0.02)
        bar.finish()
Exemplo n.º 19
0
    def read_json_with_key(self, key):
        """
            This method read json files and return only data on specific key
        """
        print('')
        progress_bar = 'Lecture des données en cours :'
        progress_bar_count = len(self.categories) * self.pages
        progress_bar = FillingCirclesBar(progress_bar, max=progress_bar_count)
        for category in self.categories:
            for page in range(self.pages):
                # Create a path for the file
                file_name = f'{page}.json'
                file_path = path.join(self.tmp_dir, category, file_name)

                # Read the JSON file
                with open(file_path, 'r') as file:
                    json_data = json.load(file)

                    # Store data in list
                    for line in json_data[key]:
                        self.data.append(line)
                progress_bar.next()
        progress_bar.finish()
Exemplo n.º 20
0
    def collect_epic(self, epic_name):
        """
            Collects all jobs in epic
            epic_name: name of job series to submit this job to
        :raise
            KeyError if epic name not registered before
        :return
            list of worker results
        """
        if epic_name not in self.__epics.keys():
            raise KeyError("Cannot find named epic '%s'" % epic_name)

        if self.__repprog:
            bar = FillingCirclesBar("Processing epic '%s'" % epic_name,
                                    max=len(self.__epics[epic_name]))
            bar.start()
            results = []
            j = 0
            while j < len(self.__epics[epic_name]):
                try:
                    results.append(
                        self.__epics[epic_name][j].result(timeout=1))
                    self.__epics[epic_name].remove(self.__epics[epic_name][j])
                    if len(self.__epics[epic_name]) > 0:
                        j %= len(self.__epics[epic_name])
                    else:
                        j = 0
                    bar.next()
                except TimeoutError:
                    j = (j + 1) % len(self.__epics[epic_name])
            bar.finish()
        else:
            results = []
            for f in self.__epics[epic_name]:
                results.append(f.result())
            self.__epics[epic_name] = []
        return results
Exemplo n.º 21
0
def main():
    arguments = docopt(__doc__)

    site = arguments['<site>']

    if arguments['--HUD']:
        source = "HUD"
        dataset_id = site
        client = None
    if arguments['--Socrata']:
        source = "Socrata"
        client = Socrata(site, arguments.get('-a'))

    try:
        if arguments.get('ls'):
            datasets = list_datasets(client, site)
            print(tabulate(datasets, headers='keys', tablefmt='psql'))
        elif arguments.get('insert'):        
            if source == "Socrata":
                dataset_id = arguments['<dataset_id>']
                metadata = client.get_metadata(dataset_id)['columns']
            if source == "HUD":
                metadata = json.loads(
                    urllib.request.urlopen(site).read())['fields']

            engine, session, geo = \
                get_connection(arguments['-d'], metadata, source)
            
            if arguments['-t']:
                Binding = get_binding(
                    metadata, geo, arguments['-t'], source
                )
            else:
                Binding = get_binding(
                    metadata, geo, dataset_id, source
                )

            # Create the table
            try:
                Binding.__table__.create(engine)
            except ProgrammingError as e:
                # Catch these here because this is our first attempt to
                # actually use the DB
                if 'already exists' in str(e):
                    raise CLIError(
                        'Destination table already exists. Specify a new table'
                        ' name with -t.'
                    )
                raise CLIError('Error creating destination table: %s' % str(e))

            num_rows, data = get_data(source, dataset_id, client)
            bar = FillingCirclesBar('  ▶ Loading from source', max=num_rows)

            # Iterate the dataset and INSERT each page
            if source == "Socrata":
                for page in data:
                    insert_data(page, session, bar, Binding)

            if source == "HUD":
                insert_data(data, session, bar, Binding)

            bar.finish()

            ui.item(
                'Committing rows (this can take a bit for large datasets).'
            )
            session.commit()

            success = 'Successfully imported %s rows.' % (
                num_rows
            )
            ui.header(success, color='\033[92m')
        if client:
            client.close()
    except CLIError as e:
        ui.header(str(e), color='\033[91m')
Exemplo n.º 22
0
plt.figure(figsize=(10, 10))
for i in range(len(poses)):
    pose = poses[i] - np.array([LOWEST_X, LOWEST_Y, 0])
    grid = convert2map(pose[:2],
                       scans[i] - np.array([LOWEST_X, LOWEST_Y]),
                       map_pix=RESOLUTION,
                       map_size=map_size,
                       prob=0.02)

    # Converting of occupancy grid to log-odds representation
    l = np.log(grid / (1 - grid))
    L += l

    progress_bar.next()

    # Converting from the log-odds representation to the probabilities grid
    G = 1 / (1 + np.exp(-L))

    if save_frames: plt.savefig('%d.png' % i, dpi=300)

    if animate:
        plt.cla()
        visualize(G, robotX1, robotY1, robotX2, robotY2)
        plt.pause(0.1)

progress_bar.finish()

visualize(G, robotX1, robotY1, robotX2, robotY2)
plt.savefig('multiranger_map.png', dpi=300)
plt.show()
def main():
    args = get_cli_args()
    validate_cli_args(args)
    alphas = np.array(args.alphas)**2
    beta = np.array(args.beta)
    beta[1] = np.deg2rad(beta[1])

    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps,
                                   args.num_landmarks_per_side,
                                   args.max_obs_per_time_step, alphas, beta,
                                   args.dt)
    else:
        raise RuntimeError('')

    should_show_plots = True if args.animate else False
    should_write_movie = True if args.movie_file else False
    should_update_plots = True if should_show_plots or should_write_movie else False

    field_map = FieldMap(args.num_landmarks_per_side)

    fig = get_plots_figure(should_show_plots, should_write_movie)
    movie_writer = get_movie_writer(should_write_movie, 'Simulation SLAM',
                                    args.movie_fps, args.plot_pause_len)
    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    with movie_writer.saving(
            fig, args.movie_file,
            data.num_steps) if should_write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]

            # TODO SLAM predict(u)

            # TODO SLAM update

            progress_bar.next()
            if not should_update_plots:
                continue

            plt.cla()
            plot_field(field_map, z)
            plot_robot(data.debug.real_robot_path[t])
            plot_observations(data.debug.real_robot_path[t],
                              data.debug.noise_free_observations[t],
                              data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0],
                     data.debug.real_robot_path[1:tp1, 1], 'm')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0],
                     data.debug.noise_free_robot_path[1:tp1, 1], 'g')

            plt.plot([data.debug.real_robot_path[t, 0]],
                     [data.debug.real_robot_path[t, 1]], '*r')
            plt.plot([data.debug.noise_free_robot_path[t, 0]],
                     [data.debug.noise_free_robot_path[t, 1]], '*g')

            # TODO plot SLAM solution

            if should_show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if should_write_movie:
                movie_writer.grab_frame()

    progress_bar.finish()

    plt.show(block=True)
Exemplo n.º 24
0
def main():
    args = get_cli_args()
    validate_cli_args(args)
    alphas = np.array(args.alphas)
    beta = np.array(args.beta)
    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps,
                                   args.num_landmarks_per_side,
                                   args.max_obs_per_time_step, alphas, beta,
                                   args.dt)
    else:
        raise RuntimeError('')

    store_sim_data = True if args.output_dir else False
    should_show_plots = True if args.animate else False
    should_write_movie = True if args.movie_file else False
    should_update_plots = True if should_show_plots or should_write_movie else False

    field_map = FieldMap(args.num_landmarks_per_side)

    fig = get_plots_figure(should_show_plots, should_write_movie)
    movie_writer = get_movie_writer(should_write_movie, 'Simulation SLAM',
                                    args.movie_fps, args.plot_pause_len)
    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    if store_sim_data:
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)
        save_input_data(data, os.path.join(args.output_dir, 'input_data.npy'))

    # slam object initialization
    slam = EKF_SLAM('ekf', 'known', 'batch', args, initial_state)
    mu_traj = mean_prior
    sigma_traj = []
    theta = []

    with movie_writer.saving(
            fig, args.movie_file,
            data.num_steps) if should_write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]

            # TODO SLAM predict(u)
            mu, Sigma = slam.predict(u)

            # TODO SLAM update
            mu, Sigma = slam.update(z)
            mu_traj = np.vstack((mu_traj, mu[:3]))
            sigma_traj.append(Sigma[:3, :3])
            theta.append(mu[2])

            progress_bar.next()
            if not should_update_plots:
                continue

            plt.cla()
            plot_field(field_map, z)
            plot_robot(data.debug.real_robot_path[t])
            plot_observations(data.debug.real_robot_path[t],
                              data.debug.noise_free_observations[t],
                              data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0],
                     data.debug.real_robot_path[1:tp1, 1], 'm')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0],
                     data.debug.noise_free_robot_path[1:tp1, 1], 'g')

            plt.plot([data.debug.real_robot_path[t, 0]],
                     [data.debug.real_robot_path[t, 1]], '*r')
            plt.plot([data.debug.noise_free_robot_path[t, 0]],
                     [data.debug.noise_free_robot_path[t, 1]], '*g')

            # TODO plot SLAM solution
            # robot filtered trajectory and covariance
            plt.plot(mu_traj[:, 0], mu_traj[:, 1], 'blue')
            plot2dcov(mu[:2], Sigma[:2, :2], color='b', nSigma=3, legend=None)

            # landmarks covariances and expected poses
            Sm = slam.Sigma[slam.iR:slam.iR + slam.iM,
                            slam.iR:slam.iR + slam.iM]
            mu_M = slam.mu[slam.iR:]
            for c in range(0, slam.iM, 2):
                Sigma_lm = Sm[c:c + 2, c:c + 2]
                mu_lm = mu_M[c:c + 2]
                plt.plot(mu_lm[0], mu_lm[1], 'ro')
                plot2dcov(mu_lm, Sigma_lm, color='k', nSigma=3, legend=None)

            if should_show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if should_write_movie:
                movie_writer.grab_frame()

    progress_bar.finish()

    # plt.figure(2)
    # plt.plot(theta)
    plt.show(block=True)

    if store_sim_data:
        file_path = os.path.join(args.output_dir, 'output_data.npy')
        with open(file_path, 'wb') as data_file:
            np.savez(data_file,
                     mean_trajectory=mu_traj,
                     covariance_trajectory=np.array(sigma_traj))
Exemplo n.º 25
0
def main():
    args = get_cli_args()
    validate_cli_args(args)
    alphas = np.array(args.alphas)**2
    beta = np.array(args.beta)
    beta[1] = np.deg2rad(beta[1])

    Q = np.array([[beta[0]**2, 0], [0, beta[1]**2]])
    filter_name = args.filter_name
    DATA_ASSOCIATION = args.data_association
    UPDATE_TYPE = args.update_type

    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    # print(initial_state)
    SAM_MODEL = Sam(initial_state=initial_state,
                    alphas=alphas,
                    slam_type=filter_name,
                    data_association=DATA_ASSOCIATION,
                    update_type=UPDATE_TYPE,
                    Q=Q)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps,
                                   args.num_landmarks_per_side,
                                   args.max_obs_per_time_step, alphas, beta,
                                   args.dt)
    else:
        raise RuntimeError('')

    should_show_plots = True if args.animate else False
    should_write_movie = True if args.movie_file else False
    should_update_plots = True if should_show_plots or should_write_movie else False

    field_map = FieldMap(args.num_landmarks_per_side)

    fig = get_plots_figure(should_show_plots, should_write_movie)
    movie_writer = get_movie_writer(should_write_movie, 'Simulation SLAM',
                                    args.movie_fps, args.plot_pause_len)
    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    with movie_writer.saving(
            fig, args.movie_file,
            data.num_steps) if should_write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]

            # TODO SLAM predict(u)
            SAM_MODEL.predict(u)

            # TODO SLAM update
            SAM_MODEL.update(z)

            # SAM_MODEL.solve()

            progress_bar.next()
            if not should_update_plots:
                continue

            plt.cla()
            plot_field(field_map, z)
            plot_robot(data.debug.real_robot_path[t])
            plot_observations(data.debug.real_robot_path[t],
                              data.debug.noise_free_observations[t],
                              data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0],
                     data.debug.real_robot_path[1:tp1, 1], 'm')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0],
                     data.debug.noise_free_robot_path[1:tp1, 1], 'g')

            plt.plot([data.debug.real_robot_path[t, 0]],
                     [data.debug.real_robot_path[t, 1]], '*r')
            plt.plot([data.debug.noise_free_robot_path[t, 0]],
                     [data.debug.noise_free_robot_path[t, 1]], '*g')

            # TODO plot SLAM solution
            for i in SAM_MODEL.LEHRBUCH.keys():
                Coord = SAM_MODEL.graph.get_estimated_state()[
                    SAM_MODEL.LEHRBUCH[i]]
                plt.plot(Coord[0], Coord[1], 'g*', markersize=7.0)

            S = SAM_MODEL.graph.get_estimated_state()
            states_results_x = []
            states_results_y = []

            for i in range(len(S)):
                if i not in SAM_MODEL.LEHRBUCH.values():
                    states_results_x.append(S[i][0][0])
                    states_results_y.append(S[i][1][0])

            plt.plot(states_results_x, states_results_y, 'b')
            plt.plot(states_results_x[-1],
                     states_results_y[-1],
                     'bo',
                     markersize=3.0)

            if should_show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if should_write_movie:
                movie_writer.grab_frame()

    # chi2var = SAM_MODEL.graph.chi2()
    # i = 0
    # error_var = 1
    # print('\n')

    # while error_var >= 0.5 and i <= 100:
    #     # print('Error equals ={}, for {} iteration'.format(chi2var,i))
    #     SAM_MODEL.graph.solve(mrob.GN)
    #     chi4var = SAM_MODEL.graph.chi2()
    #     error_var = abs(chi4var - chi2var)
    #     chi2var = chi4var
    #     i += 1
    #     print('Error ={}, Iter = {}'.format(chi2var,i))

    #______________________________________________________________________

    SAM_MODEL.graph.solve(mrob.LM)
    print(SAM_MODEL.graph.chi2())

    progress_bar.finish()

    COV = inv(SAM_MODEL.graph.get_information_matrix())[-3:-1, -3:-1]
    plot2dcov(np.array([states_results_x[-1], states_results_y[-1]]).T,
              COV.A,
              'k',
              nSigma=3)
    plt.show(block=True)

    # plt.figure(figsize=(10,10))
    # plt.plot(SAM_MODEL.ci2)
    # plt.grid('on')
    # plt.xlabel('T')
    # plt.ylabel('Estimation')
    # plt.title('Plot chi2')
    # plt.show(block=True)

    plt.figure(figsize=(8, 8))
    plt.spy(SAM_MODEL.graph.get_adjacency_matrix(),
            marker='o',
            markersize=2.0,
            color='g')
    plt.title('GAM')
    plt.show(block=True)

    plt.figure(figsize=(8, 8))
    plt.spy(SAM_MODEL.graph.get_information_matrix(),
            marker='o',
            markersize=2.0,
            color='g')
    plt.title('GIM')
    plt.show(block=True)
Exemplo n.º 26
0
def main():
    args = get_cli_args()
    validate_cli_args(args)

    # weights for covariance action noise R and observation noise Q
    alphas = np.array(args.alphas) **2 # variance of noise R proportional to alphas, see tools/tasks@get_motion_noise_covariance()
    beta = np.deg2rad(args.beta) # see also filters/localization_filter.py

    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps, alphas, beta, args.dt)
    else:
        raise RuntimeError('')

    store_sim_data = True if args.output_dir else False
    show_plots = True if args.animate else False
    write_movie = True if args.movie_file else False
    show_trajectory = True if args.animate and args.show_trajectory else False
    show_particles = args.show_particles and args.animate and args.filter_name == 'pf'
    update_mean_trajectory = True if show_trajectory or store_sim_data else False
    update_plots = True if show_plots or write_movie else False
    one_trajectory_per_particle = True if show_particles and not store_sim_data else False

    if store_sim_data:
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)
        save_input_data(data, os.path.join(args.output_dir, 'input_data.npy'))

    # ---------------------------------------------------------------------------------------------------
    # Student's task: You will fill these function inside 'filters/.py'
    # ---------------------------------------------------------------------------------------------------
    localization_filter = None
    if args.filter_name == 'ekf':
        localization_filter = EKF(initial_state, alphas, beta)
    elif args.filter_name == 'pf':
        localization_filter = PF(initial_state, alphas, beta, args.num_particles, args.global_localization)
    fig = None
    if show_plots or write_movie:
        fig = plt.figure(1)
    if show_plots:
        plt.ion()

    # Initialize the trajectory if user opted-in to display.
    sim_trajectory = None
    if update_mean_trajectory:
        if one_trajectory_per_particle:
            mean_trajectory = np.zeros((data.num_steps, localization_filter.state_dim, args.num_particles))
        else:
            mean_trajectory = np.zeros((data.num_steps, localization_filter.state_dim))

        sim_trajectory = FilterTrajectory(mean_trajectory)

    if store_sim_data:
        # Pre-allocate the memory to store the covariance matrix of the trajectory at each time step.
        sim_trajectory.covariance = np.zeros((localization_filter.state_dim,
                                              localization_filter.state_dim,
                                              data.num_steps))

    # Initialize the movie writer if `--movie-file` was present in the CL args.
    movie_writer = None
    if write_movie:
        get_ff_mpeg_writer = anim.writers['ffmpeg']
        metadata = dict(title='Localization Filter', artist='matplotlib', comment='PS2')
        movie_fps = min(args.movie_fps, float(1. / args.plot_pause_len))
        movie_writer = get_ff_mpeg_writer(fps=movie_fps, metadata=metadata)

    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    with movie_writer.saving(fig, args.movie_file, data.num_steps) if write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]

            localization_filter.predict(u)
            localization_filter.update(z)

            if update_mean_trajectory:
                if one_trajectory_per_particle:
                    sim_trajectory.mean[t, :, :] = localization_filter.X.T
                else:
                    sim_trajectory.mean[t] = localization_filter.mu

            if store_sim_data:
                sim_trajectory.covariance[:, :, t] = localization_filter.Sigma

            progress_bar.next()

            if not update_plots:
                continue

            plt.cla()
            plot_field(z[1])
            plot_robot(data.debug.real_robot_path[t])
            plot_observation(data.debug.real_robot_path[t],
                             data.debug.noise_free_observations[t],
                             data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0], data.debug.real_robot_path[1:tp1, 1], 'g')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0], data.debug.noise_free_robot_path[1:tp1, 1], 'm')

            #plt.plot([data.debug.real_robot_path[t, 0]], [data.debug.real_robot_path[t, 1]], '*g')
            plt.plot([data.debug.noise_free_robot_path[t, 0]], [data.debug.noise_free_robot_path[t, 1]], '*m')

            if show_particles:
                samples = localization_filter.X.T
                plt.scatter(samples[0], samples[1], s=2)
            else:
                plot2dcov(localization_filter.mu_bar[:-1],
                          localization_filter.Sigma_bar[:-1, :-1],
                          'red', 3,
                          legend='{} -'.format(args.filter_name.upper()))
                plot2dcov(localization_filter.mu[:-1],
                          localization_filter.Sigma[:-1, :-1],
                          'blue', 3,
                          legend='{} +'.format(args.filter_name.upper()))
                plt.legend()

            if show_trajectory:
                if len(sim_trajectory.mean.shape) > 2:
                    # This means that we probably intend to show the trajectory for ever particle.
                    x = np.squeeze(sim_trajectory.mean[0:t, 0, :])
                    y = np.squeeze(sim_trajectory.mean[0:t, 1, :])
                    plt.plot(x, y)
                else:
                    plt.plot(sim_trajectory.mean[0:t, 0], sim_trajectory.mean[0:t, 1], 'blue')

            if show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if write_movie:
                movie_writer.grab_frame()

    progress_bar.finish()

    if show_plots:
        plt.show(block=True)

    if store_sim_data:
        file_path = os.path.join(args.output_dir, 'output_data.npy')
        with open(file_path, 'wb') as data_file:
            np.savez(data_file,
                     mean_trajectory=sim_trajectory.mean,
                     covariance_trajectory=sim_trajectory.covariance)
Exemplo n.º 27
0

if os.path.isdir("download"):
    with requests.Session() as req:
        save_path = "download/"

        threads = []
        bar = FillingCirclesBar("Downloading ", max=len(cleaned_urls))
        for link in cleaned_urls:
            thread = threading.Thread(target=download, args=(link, ))
            threads.append(thread)
        for thread in threads:
            thread.start()
        for thread in threads:
            thread.join()
        bar.finish()

    # rename song files
    for file in os.listdir("download"):
        tag = TinyTag.get(os.path.join("download", file))
        newName = tag.title
        filePath = os.path.join("download", file)
        if "/" in newName:
            newName = newName.replace("/", "-")
        newNamePath = os.path.join("download", newName)
        if file.endswith(".m4a"):
            os.rename(filePath, newNamePath + ".m4a")
        elif file.endswith(".flac"):
            os.rename(filePath, newNamePath + ".flac")
        elif file.endswith(".mp3"):
            os.rename(filePath, newNamePath + ".mp3")
Exemplo n.º 28
0
    def run_style_transfer(
        self,
        content_path,
        style_path,
        folder,
        epochs,
        content_weight,
        style_weight,
        learning_rate,
        image_save_count,
    ):
        model = self.load_model()
        for layer in model.layers:
            layer.trainable = False

        # Get the style and content feature representations (from our specified intermediate layers)
        style_features, content_features = self.get_feature_representations(
            model, content_path, style_path)
        gram_style_features = [
            self.gram_matrix(style_feature) for style_feature in style_features
        ]

        init_image = self.load_image(content_path)
        init_image = tf.Variable(init_image, dtype=tf.float32)
        opt = tf.optimizers.Adam(learning_rate=0.05, beta_1=0.99, epsilon=1e-1)

        best_loss, best_img = float("inf"), None

        loss_weights = (style_weight, content_weight)
        cfg = {
            "model": model,
            "loss_weights": loss_weights,
            "init_image": init_image,
            "gram_style_features": gram_style_features,
            "content_features": content_features,
        }

        images_to_save = min(epochs, image_save_count)
        display_interval = epochs / images_to_save
        start_time = time.time()
        global_start = time.time()

        norm_means = np.array([103.939, 116.779, 123.68])
        min_vals = -norm_means
        max_vals = 255 - norm_means

        bar = FillingCirclesBar(
            f"Epoch {0}/{epochs} Loss: {0.0:4.2f} (content {0.0:4.2f}, style {0.0:4.2f})",
            max=epochs,
        )
        for epoch in range(epochs):
            grads, all_loss = self.compute_grads(cfg)
            loss, style_score, content_score = all_loss
            opt.apply_gradients([(grads, init_image)])
            clipped = tf.clip_by_value(init_image, min_vals, max_vals)
            init_image.assign(clipped)

            if loss < best_loss:
                best_loss = loss
                best_img = self.postprocess_image(init_image.numpy())

            if epoch % display_interval == 0:
                self.save_image(
                    best_img,
                    f"{folder}/e{epoch:05d}-l{best_loss:4.2f}-sl{style_score:4.2f}-cl{content_score:4.2f}.png",
                )

            bar.message = (f"Epoch {epoch}/{epochs}"
                           f" Loss: {loss:4.2f}"
                           f" (style {style_score:4.2f}"
                           f" content {content_score:4.2f})"
                           f" {(time.time() - start_time):.2f}s")
            start_time = time.time()
            bar.next()
        bar.finish()
        logging.info("Total time: {:.4f}s".format(time.time() - global_start))

        return best_img, best_loss
Exemplo n.º 29
0
def main():
    args = get_cli_args()
    validate_cli_args(args)
    alphas = np.array(args.alphas)
    beta = np.array(args.beta)**2

    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps,
                                   args.num_landmarks_per_side,
                                   args.max_obs_per_time_step, alphas, beta,
                                   args.dt)
    else:
        raise RuntimeError('')

    should_show_plots = True if args.animate else False
    should_write_movie = True if args.movie_file else False
    should_update_plots = True if should_show_plots or should_write_movie else False

    field_map = FieldMap(args.num_landmarks_per_side)

    fig = get_plots_figure(should_show_plots, should_write_movie)
    movie_writer = get_movie_writer(should_write_movie, 'Simulation SLAM',
                                    args.movie_fps, args.plot_pause_len)
    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    data = load_data("slam-evaluation-input.npy")

    slam = SAM(beta, alphas, initial_state)

    with movie_writer.saving(
            fig, args.movie_file,
            data.num_steps) if should_write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]
            # print(data.filter.observations.shape)

            slam.predict(u)
            trajectory, landmarks = slam.update(z)

            progress_bar.next()
            if not should_update_plots:
                continue

            plt.cla()
            plot_field(field_map, z, slam.lm_positions,
                       slam.lm_correspondences)
            plot_robot(data.debug.real_robot_path[t])
            plot_observations(data.debug.real_robot_path[t],
                              data.debug.noise_free_observations[t],
                              data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0],
                     data.debug.real_robot_path[1:tp1, 1], 'm')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0],
                     data.debug.noise_free_robot_path[1:tp1, 1], 'g')

            plt.plot([data.debug.real_robot_path[t, 0]],
                     [data.debug.real_robot_path[t, 1]], '*r')
            plt.plot([data.debug.noise_free_robot_path[t, 0]],
                     [data.debug.noise_free_robot_path[t, 1]], '*g')

            # TODO plot SLAM soltion
            plt.plot(np.array(trajectory)[:, 0], np.array(trajectory)[:, 1])
            plt.scatter(np.array(landmarks)[:, 0], np.array(landmarks)[:, 1])

            # print(t)

            # for lm in slam.lm_positions:
            #     # print(len(lm))
            #     if len(lm)>5:
            #         lm_mu, lm_sigma = get_gaussian_statistics_xy(np.array(lm[-5:]))
            #         # print('lm_mu',lm_mu)
            #         # print('lm_sigma',lm_sigma)
            #         # print('plot lm')
            #         plot2dcov(lm_mu, lm_sigma, 3, 50)

            if should_show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if should_write_movie:
                movie_writer.grab_frame()

    progress_bar.finish()

    plt.show(block=True)
Exemplo n.º 30
0
def main():
    args = get_cli_args()
    validate_cli_args(args)
    alphas = np.array(args.alphas)
    beta = np.array(args.beta)
    mean_prior = np.array([180., 50., 0.])
    Sigma_prior = 1e-12 * np.eye(3, 3)
    initial_state = Gaussian(mean_prior, Sigma_prior)

    if args.input_data_file:
        data = load_data(args.input_data_file)
    elif args.num_steps:
        # Generate data, assuming `--num-steps` was present in the CL args.
        data = generate_input_data(initial_state.mu.T, args.num_steps,
                                   args.num_landmarks_per_side,
                                   args.max_obs_per_time_step, alphas, beta,
                                   args.dt)
    else:
        raise RuntimeError('')

    should_show_plots = True if args.animate else False
    should_write_movie = True if args.movie_file else False
    should_update_plots = True if should_show_plots or should_write_movie else False

    field_map = FieldMap(args.num_landmarks_per_side)

    fig_robot = get_plots_figure(should_show_plots, should_write_movie)
    movie_writer = get_movie_writer(should_write_movie, 'Simulation SLAM',
                                    args.movie_fps, args.plot_pause_len)
    progress_bar = FillingCirclesBar('Simulation Progress', max=data.num_steps)

    # sam object init:
    sam = SAM(initial_state, args)
    mu_traj = np.array([None, None])
    theta = []
    with movie_writer.saving(
            fig_robot, args.movie_file,
            data.num_steps) if should_write_movie else get_dummy_context_mgr():
        for t in range(data.num_steps):
            # for t in range(50):
            # Used as means to include the t-th time-step while plotting.
            tp1 = t + 1

            # Control at the current step.
            u = data.filter.motion_commands[t]
            # Observation at the current step.
            z = data.filter.observations[t]

            # TODO SLAM predict(u)
            mu, Sigma = sam.predict(u)

            # TODO SLAM update
            mu, Sigma = sam.update(u, z)
            mu_traj = np.vstack((mu_traj, mu[:2]))
            theta.append(mu[2])

            progress_bar.next()
            if not should_update_plots:
                continue

            plt.figure(1)
            plt.cla()
            plot_field(field_map, z)
            plot_robot(data.debug.real_robot_path[t])
            plot_observations(data.debug.real_robot_path[t],
                              data.debug.noise_free_observations[t],
                              data.filter.observations[t])

            plt.plot(data.debug.real_robot_path[1:tp1, 0],
                     data.debug.real_robot_path[1:tp1, 1], 'm')
            plt.plot(data.debug.noise_free_robot_path[1:tp1, 0],
                     data.debug.noise_free_robot_path[1:tp1, 1], 'g')

            plt.plot([data.debug.real_robot_path[t, 0]],
                     [data.debug.real_robot_path[t, 1]], '*r')
            plt.plot([data.debug.noise_free_robot_path[t, 0]],
                     [data.debug.noise_free_robot_path[t, 1]], '*g')

            # TODO plot SLAM solution
            # robot filtered trajectory and covariance
            plt.plot(mu_traj[:, 0], mu_traj[:, 1], 'blue')
            plot2dcov(mu[:2], Sigma[:2, :2], color='b', nSigma=3, legend=None)

            plt.figure(2, figsize=(8, 6))
            plt.cla()
            plt.spy(sam.A, marker='o', markersize=5)

            if should_show_plots:
                # Draw all the plots and pause to create an animation effect.
                plt.draw()
                plt.pause(args.plot_pause_len)

            if should_write_movie:
                movie_writer.grab_frame()

    progress_bar.finish()

    plt.show()