Exemplo n.º 1
0
def test_decomposition():
    """ Test that this decomposition of H produces correct amplitudes

        Function tests each DecompositionRule in
        h2rx.all_defined_decomposition_rules
    """
    decomposition_rule_list = h2rx.all_defined_decomposition_rules
    for rule in decomposition_rule_list:
        for basis_state_index in range(2):
            basis_state = [0] * 2
            basis_state[basis_state_index] = 1.

            correct_dummy_eng = DummyEngine(save_commands=True)
            correct_eng = MainEngine(backend=Simulator(),
                                     engine_list=[correct_dummy_eng])

            rule_set = DecompositionRuleSet(rules=[rule])
            test_dummy_eng = DummyEngine(save_commands=True)
            test_eng = MainEngine(backend=Simulator(),
                                  engine_list=[
                                      AutoReplacer(rule_set),
                                      InstructionFilter(h_decomp_gates),
                                      test_dummy_eng
                                  ])

            correct_qb = correct_eng.allocate_qubit()
            correct_eng.flush()
            test_qb = test_eng.allocate_qubit()
            test_eng.flush()

            correct_eng.backend.set_wavefunction(basis_state, correct_qb)
            test_eng.backend.set_wavefunction(basis_state, test_qb)

            H | correct_qb
            H | test_qb

            correct_eng.flush()
            test_eng.flush()

            assert H in (cmd.gate
                         for cmd in correct_dummy_eng.received_commands)
            assert H not in (cmd.gate
                             for cmd in test_dummy_eng.received_commands)

            assert correct_eng.backend.cheat()[1] == pytest.approx(
                test_eng.backend.cheat()[1], rel=1e-12, abs=1e-12)

            Measure | test_qb
            Measure | correct_qb
Exemplo n.º 2
0
def test_cnot_decomposition():
    for basis_state_index in range(0, 4):
        basis_state = [0] * 4
        basis_state[basis_state_index] = 1.0
        correct_dummy_eng = DummyEngine(save_commands=True)
        correct_eng = MainEngine(backend=Simulator(),
                                 engine_list=[correct_dummy_eng])
        rule_set = DecompositionRuleSet(modules=[cnot2cz])
        test_dummy_eng = DummyEngine(save_commands=True)
        test_eng = MainEngine(
            backend=Simulator(),
            engine_list=[
                AutoReplacer(rule_set),
                InstructionFilter(_decomp_gates),
                test_dummy_eng,
            ],
        )
        test_sim = test_eng.backend
        correct_sim = correct_eng.backend
        correct_qb = correct_eng.allocate_qubit()
        correct_ctrl_qb = correct_eng.allocate_qubit()
        correct_eng.flush()
        test_qb = test_eng.allocate_qubit()
        test_ctrl_qb = test_eng.allocate_qubit()
        test_eng.flush()

        correct_sim.set_wavefunction(basis_state, correct_qb + correct_ctrl_qb)
        test_sim.set_wavefunction(basis_state, test_qb + test_ctrl_qb)
        CNOT | (test_ctrl_qb, test_qb)
        CNOT | (correct_ctrl_qb, correct_qb)

        test_eng.flush()
        correct_eng.flush()

        assert len(correct_dummy_eng.received_commands) == 5
        assert len(test_dummy_eng.received_commands) == 7

        for fstate in range(4):
            binary_state = format(fstate, '02b')
            test = test_sim.get_amplitude(binary_state, test_qb + test_ctrl_qb)
            correct = correct_sim.get_amplitude(binary_state,
                                                correct_qb + correct_ctrl_qb)
            assert correct == pytest.approx(test, rel=1e-12, abs=1e-12)

        All(Measure) | test_qb + test_ctrl_qb
        All(Measure) | correct_qb + correct_ctrl_qb
        test_eng.flush(deallocate_qubits=True)
        correct_eng.flush(deallocate_qubits=True)
Exemplo n.º 3
0
def run_adder(a=11, b=1, param="simulation"):
    # build compilation engine list
    resource_counter = ResourceCounter()
    rule_set = DecompositionRuleSet(
        modules=[projectq.libs.math, projectq.setups.decompositions])
    compilerengines = [
        AutoReplacer(rule_set),
        TagRemover(),
        LocalOptimizer(3),
        AutoReplacer(rule_set),
        TagRemover(),
        LocalOptimizer(3), resource_counter
    ]
    # create a main compiler engine
    if param == "latex":
        drawing_engine = CircuitDrawer()
        eng2 = MainEngine(drawing_engine)
        [xa, xb] = initialisation(eng2, a, b)
        adder(eng2, xa, xb)
        measure(eng2, xa, xb)
        print(drawing_engine.get_latex())
    else:
        eng = MainEngine(Simulator(), compilerengines)
        [xa, xb] = initialisation(eng, a, b)
        adder(eng, xa, xb)
        print(measure(eng, xa, xb))
Exemplo n.º 4
0
def test_qureg(matplotlib_setup):
    sim = Simulator()
    eng = MainEngine(sim)
    qureg = eng.allocate_qureg(3)
    eng.flush()
    _, _, prob = histogram(sim, qureg)
    assert prob["000"] == pytest.approx(1)
    assert prob["110"] == pytest.approx(0)
    H | qureg[0]
    C(X, 1) | (qureg[0], qureg[1])
    H | qureg[2]
    eng.flush()
    _, _, prob = histogram(sim, qureg)
    assert prob["110"] == pytest.approx(0.25)
    assert prob["100"] == pytest.approx(0)
    All(Measure) | qureg
    eng.flush()
    _, _, prob = histogram(sim, qureg)
    assert (
        prob["000"] == pytest.approx(1)
        or prob["001"] == pytest.approx(1)
        or prob["110"] == pytest.approx(1)
        or prob["111"] == pytest.approx(1)
    )
    assert prob["000"] + prob["001"] + prob["110"] + prob["111"] == pytest.approx(1)
Exemplo n.º 5
0
 def run(self, q_job):
     """Run circuits in q_job"""
     # Generating a string id for the job
     result_list = []
     qobj = q_job.qobj
     self._validate(qobj)
     self._sim = Simulator(gate_fusion=True)
     if 'seed' in qobj['config']:
         self._seed = qobj['config']['seed']
         self._sim._simulator = CppSim(self._seed)
     else:
         self._seed = random.getrandbits(32)
     self._shots = qobj['config']['shots']
     start = time.time()
     for circuit in qobj['circuits']:
         result_list.append(self.run_circuit(circuit))
     end = time.time()
     result = {
         'backend': self._configuration['name'],
         'id': qobj['id'],
         'result': result_list,
         'status': 'COMPLETED',
         'success': True,
         'time_taken': (end - start)
     }
     return Result(result, qobj)
def simulate_sample_period(base, modulus):
    sim = Simulator()
    eng = MainEngine(backend=sim,
                     engine_list=[
                         AutoReplacerEx(
                             DecompositionRuleSet(modules=[decompositions])),
                         LimitedCapabilityEngine(
                             allow_arithmetic=
                             not DECOMPOSE_INTO_TOFFOLIS_AND_GO_VERY_VERY_SLOW,
                             allow_toffoli=True,
                             allow_single_qubit_gates=True),
                     ])

    n = int(math.ceil(math.log(modulus, 2)))

    ancilla_qureg = eng.allocate_qureg(n)
    for q in ancilla_qureg[:-1]:
        if random.random() < 0.5:
            X | q
    before = ancilla_qureg.measure()

    result = shor_find_period(base=base,
                              modulus=modulus,
                              precision=n * 2,
                              phase_qubit=eng.allocate_qubit(),
                              work_qureg=eng.allocate_qureg(n),
                              ancilla_qureg=ancilla_qureg)
    after = ancilla_qureg.measure()
    assert after == before

    return result
Exemplo n.º 7
0
def test_Ph_eigenvectors():
    rule_set = DecompositionRuleSet(modules=[pe, dqft])
    eng = MainEngine(backend=Simulator(),
                     engine_list=[
                         AutoReplacer(rule_set),
                     ])
    results = np.array([])
    for i in range(100):
        autovector = eng.allocate_qureg(1)
        theta = cmath.pi * 2. * 0.125
        unit = Ph(theta)
        ancillas = eng.allocate_qureg(3)
        QPE(unit) | (ancillas, autovector)
        All(Measure) | ancillas
        fasebinlist = [int(q) for q in ancillas]
        fasebin = ''.join(str(j) for j in fasebinlist)
        faseint = int(fasebin, 2)
        phase = faseint / (2.**(len(ancillas)))
        results = np.append(results, phase)
        All(Measure) | autovector
        eng.flush()

    num_phase = (results == 0.125).sum()
    assert num_phase / 100. >= 0.35, "Statistics phase calculation are not correct (%f vs. %f)" % (
        num_phase / 100., 0.35)
Exemplo n.º 8
0
def create_engine(use_QI_backend=False,
                  api=None,
                  num_runs=1,
                  verbose=False,
                  gate_fusion=False):
    """
    Creates a new MainEngine. 
    If use_QI_backend= True, Quantum Inspire is used as backend,
    else the ProjectQ default Simulator

    Returns engine for simulation
    Note: backend can be accessed via engine.backend both for QuantumInspire and ProjectQ simulators
    """
    if use_QI_backend:
        assert (
            api
            is not None), 'api must be defined if QI-backend should be used'

    # Set up compiler engines
    compiler_engines = default.get_engine_list()
    compiler_engines.extend([ManualMapper(lambda x: x)])

    if use_QI_backend:
        qi_backend = QIBackend(quantum_inspire_api=api, num_runs=num_runs)
        engine = MainEngine(backend=qi_backend,
                            engine_list=compiler_engines,
                            verbose=verbose)
    else:
        sim = Simulator(gate_fusion=gate_fusion)
        engine = MainEngine(backend=sim,
                            engine_list=compiler_engines,
                            verbose=verbose)

    return engine
Exemplo n.º 9
0
def run(x=4, N=7, param="run"):
    """

    :param a: a<N and must be invertible mod[N]
    :param N:
    :param x:
    :param param:
    :return: |1> --> |(a**x) mod N>
    """
    # build compilation engine list
    resource_counter = ResourceCounter()
    rule_set = DecompositionRuleSet(modules=[projectq.libs.math,
                                             projectq.setups.decompositions])
    compilerengines = [AutoReplacer(rule_set),
                       TagRemover(),
                       LocalOptimizer(3),
                       AutoReplacer(rule_set),
                       TagRemover(),
                       LocalOptimizer(3),
                       resource_counter]

    # create a main compiler engine

    if param == "latex":
        drawing_engine = CircuitDrawer()
        eng = MainEngine(drawing_engine)
        arcsinQ(eng, x, N)
        return drawing_engine
    if param == "count":
        eng = MainEngine(resource_counter)
        arcsinQ(eng, x, N)
        return resource_counter
    else:
        eng = MainEngine(Simulator(), compilerengines)
        return arcsinQ(eng, x, N)
Exemplo n.º 10
0
def test_simple_test_X_eigenvectors():
    rule_set = DecompositionRuleSet(modules=[pe, dqft])
    eng = MainEngine(
        backend=Simulator(),
        engine_list=[
            AutoReplacer(rule_set),
        ],
    )
    N = 150
    results = np.array([])
    for i in range(N):
        autovector = eng.allocate_qureg(1)
        X | autovector
        H | autovector
        unit = X
        ancillas = eng.allocate_qureg(1)
        QPE(unit) | (ancillas, autovector)
        All(Measure) | ancillas
        fasebinlist = [int(q) for q in ancillas]
        fasebin = ''.join(str(j) for j in fasebinlist)
        faseint = int(fasebin, 2)
        phase = faseint / (2.0**(len(ancillas)))
        results = np.append(results, phase)
        All(Measure) | autovector
        eng.flush()

    num_phase = (results == 0.5).sum()
    assert num_phase / N >= 0.35, "Statistics phase calculation are not correct (%f vs. %f)" % (
        num_phase / N,
        0.35,
    )
 def __setstate__(self, state):
     # Restore instance attributes (i.e., filename and lineno).
     self.__dict__.update(state)
     # Restore the engine
     if self.backend == Simulator and self.seed is not None:
         self._engine = MainEngine(backend=Simulator(rnd_seed=self.seed))
     else:
         self._engine = MainEngine(backend=self.backend())
Exemplo n.º 12
0
def eng():
    return MainEngine(
        backend=Simulator(),
        engine_list=[
            AutoReplacer(rule_set),
            InstructionFilter(no_math_emulation)
        ],
    )
Exemplo n.º 13
0
def run_inv(a=11, b=1, param="simulation"):
    # build compilation engine list
    resource_counter = ResourceCounter()
    rule_set = DecompositionRuleSet(modules=[projectq.libs.math,
                                             projectq.setups.decompositions])
    compilerengines = [AutoReplacer(rule_set),
                       TagRemover(),
                       LocalOptimizer(3),
                       AutoReplacer(rule_set),
                       TagRemover(),
                       LocalOptimizer(3),
                       resource_counter]

    # create a main compiler engine
    a1 = a
    b1 = b
    if a == 0:
        a1 = 1
    if b == 0:
        b1 = 1
    n = max(int(math.log(a1, 2)), int(math.log(b1, 2))) + 1

    if param == "latex":
        drawing_engine = CircuitDrawer()
        eng2 = MainEngine(drawing_engine)
        xa = initialisation_n(eng2, a, n + 1)
        xb = initialisation_n(eng2, b, n + 1)
        # b --> phi(b)
        QFT | xb
        phi_adder(eng2, xa, xb)
        with Dagger(eng2):
            QFT | xb
        All(Measure) | xa
        All(Measure) | xb
        eng2.flush()
        print(drawing_engine.get_latex())
    else:
        eng = MainEngine(Simulator(), compilerengines)
        xa = initialisation_n(eng, a, n + 1)
        xb = initialisation_n(eng, b, n + 1)
        # b --> phi(b)
        QFT | xb
        with Dagger(eng):
            phi_adder(eng, xa, xb)
        with Dagger(eng):
            QFT | xb
        All(Measure) | xa
        All(Measure) | xb
        eng.flush()
        n = n+1
        measurements_a = [0] * n
        measurements_b = [0] * n
        for k in range(n):
            measurements_a[k] = int(xa[k])
            measurements_b[k] = int(xb[k])

        return [measurements_a, meas2int(measurements_b), measurements_b]
Exemplo n.º 14
0
def test_phase_majority_from_python():
    dormouse = pytest.importorskip('dormouse')

    def maj(a, b, c):
        return (a and b) or (a and c) or (b and c)  # pragma: no cover

    sim = Simulator()
    main_engine = MainEngine(sim)

    qureg = main_engine.allocate_qureg(3)
    All(H) | qureg
    PhaseOracle(maj) | qureg

    main_engine.flush()

    assert np.array_equal(np.sign(sim.cheat()[1]),
                          [1., 1., 1., -1., 1., -1., -1., -1.])
    All(Measure) | qureg
Exemplo n.º 15
0
def test_adder():
	sim = Simulator()
	eng = MainEngine(sim, [AutoReplacer(),
	                       InstructionFilter(no_math_emulation)])
	qureg = eng.allocate_qureg(4)
	init(eng, qureg, 4)
	
	AddConstant(3) | qureg
	
	assert 1. == pytest.approx(abs(sim.cheat()[1][7]))
	
	init(eng, qureg, 7)  # reset
	init(eng, qureg, 2)
	
	AddConstant(15) | qureg  # check for overflow -> should be 15+2 = 1 (mod 16)
	assert 1. == pytest.approx(abs(sim.cheat()[1][1]))
	
	Measure | qureg
def test_complex_aa():
    rule_set = DecompositionRuleSet(modules=[aa])

    eng = MainEngine(
        backend=Simulator(),
        engine_list=[
            AutoReplacer(rule_set),
        ],
    )

    system_qubits = eng.allocate_qureg(6)

    # Prepare the control qubit in the |-> state
    control = eng.allocate_qubit()
    X | control
    H | control

    # Creates the initial state form the Algorithm
    complex_algorithm(eng, system_qubits)

    # Get the probabilty of getting the marked state before the AA
    # to calculate the number of iterations
    eng.flush()
    prob000000 = eng.backend.get_probability('000000', system_qubits)
    prob111111 = eng.backend.get_probability('111111', system_qubits)

    total_amp_before = math.sqrt(prob000000 + prob111111)
    theta_before = math.asin(total_amp_before)

    # Apply Quantum Amplitude Amplification the correct number of times
    # Theta is calculated previously using get_probability
    # We calculate also the theoretical final probability
    # of getting the good state
    num_it = int(math.pi / (4.0 * theta_before) + 1)
    theoretical_prob = math.sin((2 * num_it + 1.0) * theta_before)**2
    with Loop(eng, num_it):
        QAA(complex_algorithm, complex_oracle) | (system_qubits, control)

    # Get the probabilty of getting the marked state after the AA
    # to compare with the theoretical probability after the AA
    eng.flush()
    prob000000 = eng.backend.get_probability('000000', system_qubits)
    prob111111 = eng.backend.get_probability('111111', system_qubits)
    total_prob_after = prob000000 + prob111111

    All(Measure) | system_qubits
    H | control
    Measure | control

    eng.flush()

    assert total_prob_after == pytest.approx(
        theoretical_prob, abs=1e-2
    ), "The obtained probability is less than expected %f vs. %f" % (
        total_prob_after,
        theoretical_prob,
    )
def check_quantum_permutation_circuit(register_size,
                                      permutation_func,
                                      actions,
                                      engine_list=()):
    """
    Args:
        register_size (int):
        permutation_func (function(register_sizes: tuple[int],
                                   register_vals: tuple[int]) : tuple[int]):
        actions (function(eng: MainEngine, registers: list[Qureg])):
        engine_list (list[projectq.cengines.BasicEngine]):
    """
    sim = Simulator()
    rec = DummyEngine(save_commands=True)
    eng = MainEngine(backend=sim, engine_list=list(engine_list) + [rec])

    reg = eng.allocate_qureg(register_size)

    All(H) | reg
    for i in range(len(reg)):
        Rz(math.pi / 2**i) | reg[i]
    pre_state = np.array(sim.cheat()[1])

    # Simulate.
    rec.received_commands = []
    actions(eng, [reg])
    actions = list(rec.received_commands)

    post_state = np.array(sim.cheat()[1])
    for q in reg:
        Measure | q

    denom = math.sqrt(len(pre_state))
    pre_state *= denom
    post_state *= denom
    for i in range(len(pre_state)):
        j = permutation_func([register_size], [i]) & ((1 << len(reg)) - 1)
        if not (abs(post_state[j] - pre_state[i]) < 0.000000001):
            print(commands_to_ascii_circuit(actions))
            print("Input", i)
            print("Expected Output", j)
            print("Input Amp at " + str(i), pre_state[i])
            print("Actual Amp at " + str(j), post_state[j])
        assert abs(post_state[j] - pre_state[i]) < 0.000000001
Exemplo n.º 18
0
def test_too_many_qubits(matplotlib_setup, capsys):
    sim = Simulator()
    eng = MainEngine(sim)
    qureg = eng.allocate_qureg(6)
    eng.flush()
    l_ref = len(capsys.readouterr().out)
    _, _, prob = histogram(sim, qureg)
    assert len(capsys.readouterr().out) > l_ref
    assert prob["000000"] == pytest.approx(1)
    All(Measure)
Exemplo n.º 19
0
def test_decomposition(gate_matrix):
    for basis_state in ([1, 0], [0, 1]):
        # Create single qubit gate with gate_matrix
        test_gate = MatrixGate()
        test_gate.matrix = np.matrix(gate_matrix)

        correct_dummy_eng = DummyEngine(save_commands=True)
        correct_eng = MainEngine(backend=Simulator(),
                                 engine_list=[correct_dummy_eng])

        rule_set = DecompositionRuleSet(modules=[arb1q])
        test_dummy_eng = DummyEngine(save_commands=True)
        test_eng = MainEngine(backend=Simulator(),
                              engine_list=[
                                  AutoReplacer(rule_set),
                                  InstructionFilter(z_y_decomp_gates),
                                  test_dummy_eng
                              ])

        correct_qb = correct_eng.allocate_qubit()
        correct_eng.flush()
        test_qb = test_eng.allocate_qubit()
        test_eng.flush()

        correct_eng.backend.set_wavefunction(basis_state, correct_qb)
        test_eng.backend.set_wavefunction(basis_state, test_qb)

        test_gate | test_qb
        test_gate | correct_qb

        test_eng.flush()
        correct_eng.flush()

        assert correct_dummy_eng.received_commands[2].gate == test_gate
        assert test_dummy_eng.received_commands[2].gate != test_gate

        for fstate in ['0', '1']:
            test = test_eng.backend.get_amplitude(fstate, test_qb)
            correct = correct_eng.backend.get_amplitude(fstate, correct_qb)
            assert correct == pytest.approx(test, rel=1e-12, abs=1e-12)

        Measure | test_qb
        Measure | correct_qb
Exemplo n.º 20
0
def test_modmultiplier():
	sim = Simulator()
	eng = MainEngine(sim, [AutoReplacer(),
	                       InstructionFilter(no_math_emulation)])
	
	qureg = eng.allocate_qureg(4)
	init(eng, qureg, 4)
	
	MultiplyByConstantModN(3, 7) | qureg
	
	assert 1. == pytest.approx(abs(sim.cheat()[1][5]))
	
	init(eng, qureg, 5)  # reset
	init(eng, qureg, 7)
	
	MultiplyByConstantModN(4, 13) | qureg
	assert 1. == pytest.approx(abs(sim.cheat()[1][2]))
	
	Measure | qureg
Exemplo n.º 21
0
def test_modadder():
	sim = Simulator()
	eng = MainEngine(sim, [AutoReplacer(),
	                       InstructionFilter(no_math_emulation)])
	
	qureg = eng.allocate_qureg(4)
	init(eng, qureg, 4)
	
	AddConstantModN(3, 6) | qureg
	
	assert 1. == pytest.approx(abs(sim.cheat()[1][1]))
	
	init(eng, qureg, 1)  # reset
	init(eng, qureg, 7)
	
	AddConstantModN(10, 13) | qureg
	assert 1. == pytest.approx(abs(sim.cheat()[1][4]))
	
	Measure | qureg
Exemplo n.º 22
0
def test_sqrtswap():
    for basis_state in ([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0,
                                                                   1]):
        correct_dummy_eng = DummyEngine(save_commands=True)
        correct_eng = MainEngine(backend=Simulator(),
                                 engine_list=[correct_dummy_eng])
        rule_set = DecompositionRuleSet(modules=[sqrtswap2cnot])
        test_dummy_eng = DummyEngine(save_commands=True)
        test_eng = MainEngine(
            backend=Simulator(),
            engine_list=[
                AutoReplacer(rule_set),
                InstructionFilter(_decomp_gates),
                test_dummy_eng,
            ],
        )
        test_sim = test_eng.backend
        correct_sim = correct_eng.backend
        correct_qureg = correct_eng.allocate_qureg(2)
        correct_eng.flush()
        test_qureg = test_eng.allocate_qureg(2)
        test_eng.flush()

        correct_sim.set_wavefunction(basis_state, correct_qureg)
        test_sim.set_wavefunction(basis_state, test_qureg)

        SqrtSwap | (test_qureg[0], test_qureg[1])
        test_eng.flush()
        SqrtSwap | (correct_qureg[0], correct_qureg[1])
        correct_eng.flush()

        assert len(test_dummy_eng.received_commands) != len(
            correct_dummy_eng.received_commands)
        for fstate in range(4):
            binary_state = format(fstate, '02b')
            test = test_sim.get_amplitude(binary_state, test_qureg)
            correct = correct_sim.get_amplitude(binary_state, correct_qureg)
            assert correct == pytest.approx(test, rel=1e-10, abs=1e-10)

        All(Measure) | test_qureg
        All(Measure) | correct_qureg
        test_eng.flush(deallocate_qubits=True)
        correct_eng.flush(deallocate_qubits=True)
Exemplo n.º 23
0
    def __enter__(self):
        '''
        Enter context,

        Attributes:
            eng (MainEngine): main engine.
            backend ('graphical' or 'simulate'): backend used.
            qureg (Qureg): quantum register.
        '''
        if self.task == 'ibm':
            import projectq.setups.ibm
        else:
            import projectq.setups.default

        # create a main compiler engine with a specific backend:
        if self.task == 'draw':
            self.backend = CircuitDrawer()
            # locations = {0: 0, 1: 1, 2: 2, 3:3} # swap order of lines 0-1-2.
            # self.backend.set_qubit_locations(locations)
        elif self.task == 'simulate':
            print(
                'ProjecQ simulation in training can be slow, since in scipy context, we cached a lot gates.'
            )
            self.backend = Simulator(gate_fusion=True)
        elif self.task == 'ibm':
            # choose device
            device = self.ibm_config.get(
                'device', 'ibmqx2' if self.num_bit <= 5 else 'ibmqx5')
            # check data
            if self.ibm_config is None:
                raise
            if device == 'ibmqx5':
                device_num_bit = 16
            else:
                device_num_bit = 5
            if device_num_bit < self.num_bit:
                raise AttributeError(
                    'device %s has not enough qubits for %d bit simulation!' %
                    (device, self.num_bit))

            self.backend = IBMBackend(use_hardware=True,
                                      num_runs=self.ibm_config['num_runs'],
                                      user=self.ibm_config['user'],
                                      password=self.ibm_config['password'],
                                      device=device,
                                      verbose=True)
        else:
            raise ValueError('engine %s not defined' % self.task)
        self.eng = MainEngine(self.backend)
        # initialize register
        self.qureg = self.eng.allocate_qureg(self.num_bit)
        return self
Exemplo n.º 24
0
def test_qubitop2singlequbit():
    num_qubits = 4
    random_initial_state = [
        0.2 + 0.1 * x * cmath.exp(0.1j + 0.2j * x)
        for x in range(2**(num_qubits + 1))
    ]
    rule_set = DecompositionRuleSet(modules=[qubitop2onequbit])
    test_eng = MainEngine(
        backend=Simulator(),
        engine_list=[AutoReplacer(rule_set),
                     InstructionFilter(_decomp_gates)],
    )
    test_qureg = test_eng.allocate_qureg(num_qubits)
    test_ctrl_qb = test_eng.allocate_qubit()
    test_eng.flush()
    test_eng.backend.set_wavefunction(random_initial_state,
                                      test_qureg + test_ctrl_qb)
    correct_eng = MainEngine()
    correct_qureg = correct_eng.allocate_qureg(num_qubits)
    correct_ctrl_qb = correct_eng.allocate_qubit()
    correct_eng.flush()
    correct_eng.backend.set_wavefunction(random_initial_state,
                                         correct_qureg + correct_ctrl_qb)

    qubit_op_0 = QubitOperator("X0 Y1 Z3", -1.0j)
    qubit_op_1 = QubitOperator("Z0 Y1 X3", cmath.exp(0.6j))

    qubit_op_0 | test_qureg
    with Control(test_eng, test_ctrl_qb):
        qubit_op_1 | test_qureg
    test_eng.flush()

    correct_eng.backend.apply_qubit_operator(qubit_op_0, correct_qureg)
    with Control(correct_eng, correct_ctrl_qb):
        Ph(0.6) | correct_qureg[0]
        Z | correct_qureg[0]
        Y | correct_qureg[1]
        X | correct_qureg[3]
    correct_eng.flush()

    for fstate in range(2**(num_qubits + 1)):
        binary_state = format(fstate, '0' + str(num_qubits + 1) + 'b')
        test = test_eng.backend.get_amplitude(binary_state,
                                              test_qureg + test_ctrl_qb)
        correct = correct_eng.backend.get_amplitude(
            binary_state, correct_qureg + correct_ctrl_qb)
        assert correct == pytest.approx(test, rel=1e-10, abs=1e-10)

    All(Measure) | correct_qureg + correct_ctrl_qb
    All(Measure) | test_qureg + test_ctrl_qb
    correct_eng.flush()
    test_eng.flush()
Exemplo n.º 25
0
def test_simulator_send():
    sim = Simulator()
    backend = DummyEngine(save_commands=True)

    eng = MainEngine(backend, [sim])

    qubit = eng.allocate_qubit()
    H | qubit
    Measure | qubit
    del qubit
    eng.flush()

    assert len(backend.received_commands) == 5
    def __init__(self,
                 register_size: int = 16,
                 seed: int = None,
                 backend=Simulator):
        if backend == Simulator and seed is not None:
            self._engine = MainEngine(backend=Simulator(rnd_seed=seed))

        else:
            self._engine = MainEngine(backend=backend())
        self.backend = backend
        self.seed = seed

        # if random numbers are needed to simulate quantum noise use this
        # state in the following way self._random_state.rand()
        self._random_state = RandomState(seed)

        self._qubit_register = None

        # defaulted to 16 because the bitcode status return
        # has 16 bits assigned for measurement results.
        self._qubit_register_size = register_size

        # stores control qubits
        self._control_qubit_indices = []

        # assign projectq gate to each opcode
        self._parameterised_gate_dict = {
            Opcode['CONTROL'].value: C,
            Opcode['R'].value: R,
            Opcode['RX'].value: Rx,
            Opcode['RY'].value: Ry,
            Opcode['RZ'].value: Rz,
            Opcode['PIXY'].value: PiXY,
            Opcode['PIYZ'].value: PiYZ,
            Opcode['PIZX'].value: PiZX,
        }

        self._constant_gate_dict = {
            Opcode['H'].value: H,
            Opcode['S'].value: S,
            Opcode['SQRT_X'].value: SqrtX,
            Opcode['T'].value: T,
            Opcode['X'].value: X,
            Opcode['Y'].value: Y,
            Opcode['Z'].value: Z,
            Opcode['INVS'].value: DaggeredGate(S),
            Opcode['SX'].value: Sx,  # consecutive S and X gate, needed for RC
            Opcode['SY'].value: Sy,  # consecutive S and Y gate, needed for RC
        }
        atexit.register(self.cleanup)
Exemplo n.º 27
0
def test_X_no_eigenvectors():
    rule_set = DecompositionRuleSet(
        modules=[pe, dqft, stateprep2cnot, ucr2cnot])
    eng = MainEngine(
        backend=Simulator(),
        engine_list=[
            AutoReplacer(rule_set),
        ],
    )
    N = 100
    results = np.array([])
    results_plus = np.array([])
    results_minus = np.array([])
    for i in range(N):
        autovector = eng.allocate_qureg(1)
        amplitude0 = (np.sqrt(2) + np.sqrt(6)) / 4.0
        amplitude1 = (np.sqrt(2) - np.sqrt(6)) / 4.0
        StatePreparation([amplitude0, amplitude1]) | autovector
        unit = X
        ancillas = eng.allocate_qureg(1)
        QPE(unit) | (ancillas, autovector)
        All(Measure) | ancillas
        fasebinlist = [int(q) for q in ancillas]
        fasebin = ''.join(str(j) for j in fasebinlist)
        faseint = int(fasebin, 2)
        phase = faseint / (2.0**(len(ancillas)))
        results = np.append(results, phase)
        Tensor(H) | autovector
        if np.allclose(phase, 0.0, rtol=1e-1):
            results_plus = np.append(results_plus, phase)
            All(Measure) | autovector
            autovector_result = int(autovector)
            assert autovector_result == 0
        elif np.allclose(phase, 0.5, rtol=1e-1):
            results_minus = np.append(results_minus, phase)
            All(Measure) | autovector
            autovector_result = int(autovector)
            assert autovector_result == 1
        eng.flush()

    total = len(results_plus) + len(results_minus)
    plus_probability = len(results_plus) / N
    assert total == pytest.approx(N, abs=5)
    assert plus_probability == pytest.approx(
        1.0 / 4.0, abs=1e-1
    ), "Statistics on |+> probability are not correct (%f vs. %f)" % (
        plus_probability,
        1.0 / 4.0,
    )
    def process_circuits(
        self,
        circuits: Iterable[Circuit],
        n_shots: Optional[int] = None,
        valid_check: bool = True,
        **kwargs: KwargTypes,
    ) -> List[ResultHandle]:
        """
        See :py:meth:`pytket.backends.Backend.process_circuits`.
        Supported kwargs: `seed`.
        """
        circuit_list = list(circuits)
        if valid_check:
            self._check_all_circuits(circuit_list)

        handle_list = []
        for circuit in circuit_list:
            sim = Simulator(rnd_seed=kwargs.get("seed"))
            fwd = ForwarderEngine(sim)
            eng = MainEngine(backend=sim, engine_list=[fwd])
            qureg = eng.allocate_qureg(circuit.n_qubits)
            tk_to_projectq(eng, qureg, circuit, True)
            eng.flush()
            state = np.array(
                eng.backend.cheat()[1], dtype=complex
            )  # `cheat()` returns tuple:(a dictionary of qubit indices, statevector)
            handle = ResultHandle(str(uuid4()))
            try:
                phase = float(circuit.phase)
                coeff = np.exp(phase * np.pi * 1j)
                state *= coeff
            except ValueError:
                warning(
                    "Global phase is dependent on a symbolic parameter, so cannot "
                    "adjust for phase")
            implicit_perm = circuit.implicit_qubit_permutation()
            # reverse qubits as projectq state is dlo
            res_qubits = [
                implicit_perm[qb]
                for qb in sorted(circuit.qubits, reverse=True)
            ]
            measures = circuit.n_gates_of_type(OpType.Measure)
            if measures == 0 and n_shots is not None:
                backres = self.empty_result(circuit, n_shots=n_shots)
            else:
                backres = BackendResult(q_bits=res_qubits, state=state)
            self._cache[handle] = {"result": backres}
            handle_list.append(handle)
        return handle_list
Exemplo n.º 29
0
def test_comparator():
    sim = Simulator()
    eng = MainEngine(
        sim, [AutoReplacer(rule_set),
              InstructionFilter(no_math_emulation)])
    qureg_a = eng.allocate_qureg(3)
    qureg_b = eng.allocate_qureg(3)
    compare_qubit = eng.allocate_qubit()

    init(eng, qureg_a, 5)
    init(eng, qureg_b, 3)

    Comparator() | (qureg_a, qureg_b, compare_qubit)

    assert 1. == pytest.approx(eng.backend.get_probability([1], compare_qubit))
Exemplo n.º 30
0
def bench_projectq(n, depth):
    eng = MainEngine(backend=Simulator(gate_fusion=True), engine_list=[])
    qbits = eng.allocate_qureg(n)

    start = time.time()

    for level in range(depth):
        for q in qbits:
            ops.H | q
            ops.T | q
            if q != qbits[0]:
                ops.CNOT | (q, qbits[0])

    for q in qbits:
        ops.Measure | q
    return time.time() - start