Exemplo n.º 1
0
    def train(self, train_ds, train_hooks=[]):
        """train on a `Dataset`"""
        if not isinstance(train_ds, Dataset):
            raise ValueError(
                'expect dataset to be instance of Dataset, got %s' %
                repr(train_ds))

        train_program, model_spec, summary_record = self._build_for_train(
            train_ds)
        train_run_hooks = [
            hooks.StopAtStepHook(self.run_config.max_steps,
                                 self.run_config.run_steps),
            hooks.LoggingHook(
                model_spec.loss,
                summary_record=summary_record,
                summary_writer=_get_summary_writer(
                    os.path.join(self.run_config.model_dir,
                                 'train_history%s' % self.run_config.log_id)),
                per_step=self.run_config.log_steps,
                prefix=self.run_config.log_prefix or 'training',
                skip_step=self.run_config.skip_steps),
        ]
        if model_spec.train_hooks is not None:
            train_run_hooks.extend(model_spec.train_hooks)
        train_run_hooks.extend(train_hooks)

        train_executor = F.Executor(_get_one_place())

        mon_exe = MonitoredExecutor(train_executor,
                                    train_program,
                                    loss=model_spec.loss,
                                    run_config=self.run_config,
                                    run_hooks=train_run_hooks,
                                    warm_start_setting=self.warm_start_setting)

        distribution.init_distribuition_env(
            train_program)  #only initialize distribute training with
        mon_exe.init_or_restore_variables()
        if distribution.status.is_master:
            mon_exe._hooks.append(
                hooks.CheckpointSaverHook(
                    mon_exe._saver,
                    per_step=mon_exe._save_steps,
                    skip_step=mon_exe._skip_steps,
                ))

        try:
            with mon_exe:
                for data in train_ds.start():
                    mon_exe.run(feed=data)
        except (StopException, F.core.EOFException) as e:
            pass

        return mon_exe.result
Exemplo n.º 2
0
    def evaluate(self, eval_dataset, eval_hooks=[]):
        """eval on a `Dataset`"""
        if not isinstance(eval_dataset, Dataset):
            raise ValueError(
                'expect dataset to be instance of Dataset, got %s' %
                repr(eval_dataset))
        program, model_spec = self._build_for_eval(eval_dataset)
        single_card_place = _get_one_place()
        eval_executor = F.Executor(single_card_place)

        eval_run_hooks = [
            hooks.StopAtStepHook(self.run_config.eval_max_steps,
                                 self.run_config.eval_max_steps),
            hooks.EvalHook(model_spec.metrics, )
        ]

        if model_spec.eval_hooks is not None:
            eval_run_hooks.extend(model_spec.eval_hooks)
        eval_run_hooks.extend(eval_hooks)

        mon_exe = MonitoredExecutor(eval_executor,
                                    program,
                                    loss=model_spec.loss,
                                    run_config=self.run_config,
                                    run_hooks=eval_run_hooks,
                                    warm_start_setting=self.warm_start_setting)
        distribution.init_distribuition_env(
            program)  #only initialize distribute training with
        mon_exe.init_or_restore_variables()

        try:
            with mon_exe:
                for data in eval_dataset.start():
                    mon_exe.run(feed=data)
        except (StopException, F.core.EOFException) as e:
            pass

        _, eval_result = mon_exe.result

        summary_writer = _get_summary_writer(
            os.path.join(self.run_config.model_dir,
                         'eval_history%s' % self.run_config.log_id))
        _log_eval_result('eval', eval_result, summary_writer, mon_exe.state)

        return eval_result