def load_stack_and_segment(path, imsave): """Load a stack from the given path and segment it.""" autof_stack = Stack.from_path(path, channel=2) nuclear_stack = Stack.from_path(path, channel=2) return segmentation_from_stacks(nuclear_stack, autof_stack, imsave)
def find_probe_locations(stack_dir, imsave, pchannel): """Find probe locations. Given a path, we construct a z stack from the first channel of the images in that path, and then find probes within that stack. Returns a list of coordinate pairs, representing x, y locations of probes. """ zstack = Stack.from_path(stack_dir, channel=pchannel) # For comparative purposes (so we save the image) projection = max_intensity_projection(zstack) # Normalise each image in the stack norm_stack = normalise_stack(zstack) # Now take a maximum intensity projection norm_projection = max_intensity_projection(norm_stack, 'norm_projection') # Find edges should show the circle-like probes as annuli edges = find_edges(norm_projection) # Find a suitable template image for matching template = find_best_template(edges, imsave) match_result = match_template(edges.image_array, template, pad_input=True) imsave('stage2_match.png', match_result) # Set a threshold for matched locations match_thresh = 0.6 print "t,c" for t in np.arange(0.1, 1, 0.05): print "{},{}".format(t, len(np.where(match_result > t)[0])) locs = np.where(match_result > match_thresh) annotated_edges = grayscale_to_rgb(edges.image_array) annotated_edges[locs] = edges.image_array.max(), 0, 0 imsave('annotated_edges.png', annotated_edges) # Find the centroids of the locations where we think there's a probe cloc_array = match_result > match_thresh ia_locs = ImageArray(cloc_array, name='new_cloc') connected_components = find_connected_components(ia_locs) centroids = component_centroids(connected_components) probe_locs = zip(*np.where(centroids.image_array != 0)) generate_probe_loc_image(norm_projection, probe_locs, imsave) return probe_locs