Exemplo n.º 1
0
        def run_sapt():
            if ddlow.name() == 'SCF':
                dimer_wfn = ddlow
            else:
                dimer_wfn = ddlow.reference_wavefunction()

            aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_SAPT",
                                            core.get_global_option("DF_BASIS_SAPT"),
                                            "RIFIT", core.get_global_option("BASIS"))
            dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis)
            dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis)
            core.sapt(dimer_wfn, m1mlow, m2mlow)
            return {k: core.get_variable(k) for k in ('SAPT ELST10,R ENERGY', 'SAPT EXCH10 ENERGY',
                    'SAPT EXCH10(S^2) ENERGY', 'SAPT IND20,R ENERGY', 'SAPT EXCH-IND20,R ENERGY',
                    'SAPT EXCH-DISP20 ENERGY', 'SAPT DISP20 ENERGY', 'SAPT SAME-SPIN EXCH-DISP20 ENERGY',
                    'SAPT SAME-SPIN DISP20 ENERGY', 'SAPT HF TOTAL ENERGY',
            )}
Exemplo n.º 2
0
def psi4_dryrun(wfn,my_options,cache,comp_hash,psi_variable=None):
    """
    This function mock runs a Psi4 call as if Psi4 obeyed the Pulsar framework
    API fully.  More specifically, it checks the cache for an answer, if it
    finds it, it then returns it, otherwise it skims the Psi variables.
    See [Using the Cache with Psi4](@ref cacheing) for more details.

    NOTE: We don't want, for example, CCSD to have to know that it contains MP2
    and HF because MP2 knows it contains HF.  Instead, we only want CCSD to
    deal with the fact that it contains MP2.  Furthermore, Psi4 needs all
    options set at the begining so each module has to do this through the only
    call it has, i.e. the deriv function, that function ultimately calls this
    function, so this function also has to set the options.  This isn't ideal,
    but the alternative is having every method know all submethods it contains,
    which I like less...
   
    wfn (psr.datastore.wavefunction) : the wavefunction to cache
    my_options (psr.datastore.OptionMap) : the options, in Pulsar format
    cache (psr.datastore.CacheData) : the cache for this module
    comp_hash (string) : the hash of this computation
    psi_variable (string) : the Psi variable Psi4 uses for this energy quantity
    
    NOTE: Only energies work.  To my knowledge Psi4 doesn't support getting say
    the HF component of the MP2 gradient.
    """
    
    out=psr.get_global_output()
    data=cache.get(comp_hash,True)
    if data: return data
    out.debug("Did not use cached value for: "+psi_variable+"\n")
    if psi_variable and psi4.has_variable(psi_variable):
        Egy=psi4.get_variable(psi_variable)
        data=(wfn,[Egy])
        cache.set(comp_hash,data,CheckpointPolicy)
        return cache.get(comp_hash,True)
    return wfn,[]
Exemplo n.º 3
0
def print_ci_results(ciwfn, rname, scf_e, ci_e, print_opdm_no=False):
    """
    Printing for all CI Wavefunctions
    """

    # Print out energetics
    core.print_out("\n   ==> Energetics <==\n\n")
    core.print_out("    SCF energy =         %20.15f\n" % scf_e)
    if "CI" in rname:
        core.print_out("    Total CI energy =    %20.15f\n" % ci_e)
    elif "MP" in rname:
        core.print_out("    Total MP energy =    %20.15f\n" % ci_e)
    elif "ZAPT" in rname:
        core.print_out("    Total ZAPT energy =  %20.15f\n" % ci_e)
    else:
        core.print_out("    Total MCSCF energy = %20.15f\n" % ci_e)

    # Nothing to be done for ZAPT or MP
    if ("MP" in rname) or ("ZAPT" in rname):
        core.print_out("\n")
        return

    # Initial info
    ci_nroots = core.get_option("DETCI", "NUM_ROOTS")
    irrep_labels = ciwfn.molecule().irrep_labels()

    # Grab the D-vector
    dvec = ciwfn.D_vector()
    dvec.init_io_files(True)

    for root in range(ci_nroots):
        core.print_out("\n   ==> %s root %d information <==\n\n" % (rname, root))

        # Print total energy
        root_e = core.get_variable("CI ROOT %d TOTAL ENERGY" % (root))
        core.print_out("    %s Root %d energy =  %20.15f\n" % (rname, root, root_e))

        # Print natural occupations
        if print_opdm_no:
            core.print_out("\n   Active Space Natural occupation numbers:\n\n")

            occs_list = []
            r_opdm = ciwfn.get_opdm(root, root, "SUM", False)
            for h in range(len(r_opdm.nph)):
                if 0 in r_opdm.nph[h].shape:
                    continue
                nocc, rot = np.linalg.eigh(r_opdm.nph[h])
                for e in nocc:
                    occs_list.append((e, irrep_labels[h]))

            occs_list.sort(key=lambda x: -x[0])

            cnt = 0
            for value, label in occs_list:
                value, label = occs_list[cnt]
                core.print_out("      %4s  % 8.6f" % (label, value))
                cnt += 1
                if (cnt % 3) == 0:
                    core.print_out("\n")

            if (cnt % 3):
                core.print_out("\n")

        # Print CIVector information
        ciwfn.print_vector(dvec, root)

    # True to keep the file
    dvec.close_io_files(True)
Exemplo n.º 4
0
def run_sapt_dft(name, **kwargs):
    optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_GRAC_SHIFT'],
                                   ['SCF', 'SAVE_JK'])

    core.tstart()
    # Alter default algorithm
    if not core.has_option_changed('SCF', 'SCF_TYPE'):
        core.set_local_option('SCF', 'SCF_TYPE', 'DF')

    core.prepare_options_for_module("SAPT")

    # Get the molecule of interest
    ref_wfn = kwargs.get('ref_wfn', None)
    if ref_wfn is None:
        sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
    else:
        core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.')
        sapt_dimer = ref_wfn.molecule()

    sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer")

    # Grab overall settings
    mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A")
    mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B")
    do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF")
    sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")

    # Print out the title and some information
    core.print_out("\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("         " + "SAPT(DFT) Procedure".center(58) + "\n")
    core.print_out("\n")
    core.print_out("         " + "by Daniel G. A. Smith".center(58) + "\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  !!!  WARNING:  SAPT(DFT) capability is in beta. Please use with caution. !!!\n\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" % str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" % ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" % core.get_option("SCF", "SCF_TYPE"))
    core.print_out("\n")
    core.print_out("   Required computations:\n")
    if (do_delta_hf):
        core.print_out("     HF  (Dimer)\n")
        core.print_out("     HF  (Monomer A)\n")
        core.print_out("     HF  (Monomer B)\n")
    core.print_out("     DFT (Monomer A)\n")
    core.print_out("     DFT (Monomer B)\n")
    core.print_out("\n")

    if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)):
        raise ValidationError('SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".')

    if (core.get_option('SCF', 'REFERENCE') != 'RHF'):
        raise ValidationError('SAPT(DFT) currently only supports restricted references.')

    core.IO.set_default_namespace('dimer')
    data = {}

    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        # core.set_global_option('DF_INTS_IO', 'LOAD')
        core.set_global_option('DF_INTS_IO', 'SAVE')

    # # Compute dimer wavefunction
    hf_cache = {}
    hf_wfn_dimer = None
    if do_delta_hf:
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.set_global_option('DF_INTS_IO', 'SAVE')

        hf_data = {}
        hf_wfn_dimer = scf_helper("SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs)
        hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY")

        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'dimer', 'monomerA')
        hf_wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs)
        hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY")


        core.set_global_option("SAVE_JK", True)
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerA', 'monomerB')
        hf_wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs)
        hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY")
        core.set_global_option("SAVE_JK", False)

        # Move it back to monomer A
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerB', 'dimer')

        core.print_out("\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("         " + "SAPT(DFT): delta HF Segement".center(58) + "\n")
        core.print_out("\n")
        core.print_out("         " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("\n")

        # Build cache and JK
        sapt_jk = hf_wfn_B.jk()

        hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True)

        # Electostatics
        elst = sapt_jk_terms.electrostatics(hf_cache, True)
        hf_data.update(elst)

        # Exchange
        exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True)
        hf_data.update(exch)

        # Induction
        ind = sapt_jk_terms.induction(
            hf_cache,
            sapt_jk,
            True,
            maxiter=core.get_option("SAPT", "MAXITER"),
            conv=core.get_option("SAPT", "D_CONVERGENCE"),
            Sinf=core.get_option("SAPT", "DO_IND_EXCH_SINF"))
        hf_data.update(ind)

        dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data["HF MONOMER B"]

        core.print_out("\n")
        core.print_out(print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value))

        data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF")
        sapt_jk.finalize()

    if hf_wfn_dimer is None:
        dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS"))
    else:
        dimer_wfn = hf_wfn_dimer

    # Set the primary functional
    core.set_local_option('SCF', 'REFERENCE', 'RKS')

    # Compute Monomer A wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'dimer', 'monomerA')

    if mon_a_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift)

    # Save the JK object
    core.IO.set_default_namespace('monomerA')
    wfn_A = scf_helper(
        sapt_dft_functional, post_scf=False, molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs)
    data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Compute Monomer B wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'monomerA', 'monomerB')

    if mon_b_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift)

    core.set_global_option("SAVE_JK", True)
    core.IO.set_default_namespace('monomerB')
    wfn_B = scf_helper(
        sapt_dft_functional, post_scf=False, molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs)
    data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Write out header
    scf_alg = core.get_option("SCF", "SCF_TYPE")
    sapt_dft_header(sapt_dft_functional, mon_a_shift, mon_b_shift, bool(do_delta_hf), scf_alg)

    # Call SAPT(DFT)
    sapt_jk = wfn_B.jk()
    sapt_dft(dimer_wfn, wfn_A, wfn_B, sapt_jk=sapt_jk, data=data, print_header=False)

    # Copy data back into globals
    for k, v in data.items():
        core.set_variable(k, v)

    core.tstop()

    return dimer_wfn
Exemplo n.º 5
0
def run_sapt_dft(name, **kwargs):
    optstash = p4util.OptionsState(['SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_GRAC_SHIFT'],
                                   ['SCF', 'SAVE_JK'])

    core.tstart()
    # Alter default algorithm
    if not core.has_global_option_changed('SCF_TYPE'):
        core.set_global_option('SCF_TYPE', 'DF')

    core.prepare_options_for_module("SAPT")

    # Get the molecule of interest
    ref_wfn = kwargs.get('ref_wfn', None)
    if ref_wfn is None:
        sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
    else:
        core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.')
        sapt_dimer = ref_wfn.molecule()

    sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer")

    # Grab overall settings
    mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A")
    mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B")
    do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF")
    sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")

    # Print out the title and some information
    core.print_out("\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("         " + "SAPT(DFT) Procedure".center(58) + "\n")
    core.print_out("\n")
    core.print_out("         " + "by Daniel G. A. Smith".center(58) + "\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  !!!  WARNING:  SAPT(DFT) capability is in beta. Please use with caution. !!!\n\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" % str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" % ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" % core.get_global_option("SCF_TYPE"))
    core.print_out("\n")
    core.print_out("   Required computations:\n")
    if (do_delta_hf):
        core.print_out("     HF  (Dimer)\n")
        core.print_out("     HF  (Monomer A)\n")
        core.print_out("     HF  (Monomer B)\n")
    core.print_out("     DFT (Monomer A)\n")
    core.print_out("     DFT (Monomer B)\n")
    core.print_out("\n")

    if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)):
        raise ValidationError('SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".')

    if (core.get_option('SCF', 'REFERENCE') != 'RHF'):
        raise ValidationError('SAPT(DFT) currently only supports restricted references.')

    core.IO.set_default_namespace('dimer')
    data = {}

    if (core.get_global_option('SCF_TYPE') == 'DF'):
        # core.set_global_option('DF_INTS_IO', 'LOAD')
        core.set_global_option('DF_INTS_IO', 'SAVE')

    # # Compute dimer wavefunction
    hf_wfn_dimer = None
    if do_delta_hf:
        if (core.get_global_option('SCF_TYPE') == 'DF'):
            core.set_global_option('DF_INTS_IO', 'SAVE')

        hf_data = {}
        hf_wfn_dimer = scf_helper("SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs)
        hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY")

        if (core.get_global_option('SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'dimer', 'monomerA')

        hf_wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs)
        hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY")

        core.set_global_option("SAVE_JK", True)
        if (core.get_global_option('SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerA', 'monomerB')

        hf_wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs)
        hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY")
        core.set_global_option("SAVE_JK", False)

        # Grab JK object and set to A (so we do not save many JK objects)
        sapt_jk = hf_wfn_B.jk()
        hf_wfn_A.set_jk(sapt_jk)
        core.set_global_option("SAVE_JK", False)

        # Move it back to monomer A
        if (core.get_global_option('SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerB', 'dimer')

        core.print_out("\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("         " + "SAPT(DFT): delta HF Segement".center(58) + "\n")
        core.print_out("\n")
        core.print_out("         " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("\n")

        # Build cache
        hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True)

        # Electostatics
        elst = sapt_jk_terms.electrostatics(hf_cache, True)
        hf_data.update(elst)

        # Exchange
        exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True)
        hf_data.update(exch)

        # Induction
        ind = sapt_jk_terms.induction(
            hf_cache,
            sapt_jk,
            True,
            maxiter=core.get_option("SAPT", "MAXITER"),
            conv=core.get_option("SAPT", "D_CONVERGENCE"),
            Sinf=core.get_option("SAPT", "DO_IND_EXCH_SINF"))
        hf_data.update(ind)

        dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data["HF MONOMER B"]

        core.print_out("\n")
        core.print_out(print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value))

        data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF")
        sapt_jk.finalize()

        del hf_wfn_A, hf_wfn_B, sapt_jk

    if hf_wfn_dimer is None:
        dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS"))
    else:
        dimer_wfn = hf_wfn_dimer

    # Set the primary functional
    core.set_local_option('SCF', 'REFERENCE', 'RKS')

    # Compute Monomer A wavefunction
    if (core.get_global_option('SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'dimer', 'monomerA')

    if mon_a_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift)

    # Save the JK object
    core.IO.set_default_namespace('monomerA')
    wfn_A = scf_helper(
        sapt_dft_functional, post_scf=False, molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs)
    data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Compute Monomer B wavefunction
    if (core.get_global_option('SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'monomerA', 'monomerB')

    if mon_b_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift)

    core.set_global_option("SAVE_JK", True)
    core.IO.set_default_namespace('monomerB')
    wfn_B = scf_helper(
        sapt_dft_functional, post_scf=False, molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs)
    data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY")

    # Save JK object
    sapt_jk = wfn_B.jk()
    wfn_A.set_jk(sapt_jk)
    core.set_global_option("SAVE_JK", False)

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Write out header
    scf_alg = core.get_global_option("SCF_TYPE")
    sapt_dft_header(sapt_dft_functional, mon_a_shift, mon_b_shift, bool(do_delta_hf), scf_alg)

    # Call SAPT(DFT)
    sapt_jk = wfn_B.jk()
    sapt_dft(dimer_wfn, wfn_A, wfn_B, sapt_jk=sapt_jk, data=data, print_header=False)

    # Copy data back into globals
    for k, v in data.items():
        core.set_variable(k, v)

    core.tstop()

    return dimer_wfn
Exemplo n.º 6
0
def nbody_gufunc(func, method_string, **kwargs):
    """
    Computes the nbody interaction energy, gradient, or Hessian depending on input.
    This is a generalized univeral function for computing interaction quantities.

    :returns: *return type of func* |w--w| The interaction data.

    :returns: (*float*, :py:class:`~psi4.core.Wavefunction`) |w--w| interaction data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    :type func: function
    :param func: ``energy`` || etc.

        Python function that accepts method_string and a molecule. Returns a
        energy, gradient, or Hessian as requested.

    :type method_string: string
    :param method_string: ``'scf'`` || ``'mp2'`` || ``'ci5'`` || etc.

        First argument, lowercase and usually unlabeled. Indicates the computational
        method to be passed to func.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :type return_wfn: :ref:`boolean <op_py_boolean>`
    :param return_wfn: ``'on'`` || |dl| ``'off'`` |dr|

        Indicate to additionally return the :py:class:`~psi4.core.Wavefunction`
        calculation result as the second element of a tuple.

    :type bsse_type: string or list
    :param bsse_type: ``'cp'`` || ``['nocp', 'vmfc']`` || |dl| ``None`` |dr| || etc.

        Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this
        list is returned by this function. By default, this function is not called.

    :type max_nbody: int
    :param max_nbody: ``3`` || etc.

        Maximum n-body to compute, cannot exceed the number of fragments in the moleucle.

    :type ptype: string
    :param ptype: ``'energy'`` || ``'gradient'`` || ``'hessian'``

        Type of the procedure passed in.

    :type return_total_data: :ref:`boolean <op_py_boolean>`
    :param return_total_data: ``'on'`` || |dl| ``'off'`` |dr|

        If True returns the total data (energy/gradient/etc) of the system,
        otherwise returns interaction data.
    """

    ### ==> Parse some kwargs <==
    kwargs = p4util.kwargs_lower(kwargs)
    return_wfn = kwargs.pop('return_wfn', False)
    ptype = kwargs.pop('ptype', None)
    return_total_data = kwargs.pop('return_total_data', False)
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()
    core.clean_variables()

    if ptype not in ['energy', 'gradient', 'hessian']:
        raise ValidationError("""N-Body driver: The ptype '%s' is not regonized.""" % ptype)

    # Figure out BSSE types
    do_cp = False
    do_nocp = False
    do_vmfc = False
    return_method = False

    # Must be passed bsse_type
    bsse_type_list = kwargs.pop('bsse_type')
    if bsse_type_list is None:
        raise ValidationError("N-Body GUFunc: Must pass a bsse_type")
    if not isinstance(bsse_type_list, list):
        bsse_type_list = [bsse_type_list]

    for num, btype in enumerate(bsse_type_list):
        if btype.lower() == 'cp':
            do_cp = True
            if (num == 0): return_method = 'cp'
        elif btype.lower() == 'nocp':
            do_nocp = True
            if (num == 0): return_method = 'nocp'
        elif btype.lower() == 'vmfc':
            do_vmfc = True
            if (num == 0): return_method = 'vmfc'
        else:
            raise ValidationError("N-Body GUFunc: bsse_type '%s' is not recognized" % btype.lower())

    max_nbody = kwargs.get('max_nbody', -1)
    max_frag = molecule.nfragments()
    if max_nbody == -1:
        max_nbody = molecule.nfragments()
    else:
        max_nbody = min(max_nbody, max_frag)

    # What levels do we need?
    nbody_range = range(1, max_nbody + 1)
    fragment_range = range(1, max_frag + 1)

    # Flip this off for now, needs more testing
    # If we are doing CP lets save them integrals
    #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
    #    # Set to save RI integrals for repeated full-basis computations
    #    ri_ints_io = core.get_global_option('DF_INTS_IO')

    #    # inquire if above at all applies to dfmp2 or just scf
    #    core.set_global_option('DF_INTS_IO', 'SAVE')
    #    psioh = core.IOManager.shared_object()
    #    psioh.set_specific_retention(97, True)


    bsse_str = bsse_type_list[0]
    if len(bsse_type_list) >1:
        bsse_str =  str(bsse_type_list)
    core.print_out("\n\n")
    core.print_out("   ===> N-Body Interaction Abacus <===\n")
    core.print_out("        BSSE Treatment:                     %s\n" % bsse_str)


    cp_compute_list = {x:set() for x in nbody_range}
    nocp_compute_list = {x:set() for x in nbody_range}
    vmfc_compute_list = {x:set() for x in nbody_range}
    vmfc_level_list = {x:set() for x in nbody_range} # Need to sum something slightly different

    # Build up compute sets
    if do_cp:
        # Everything is in dimer basis
        basis_tuple = tuple(fragment_range)
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                cp_compute_list[nbody].add( (x, basis_tuple) )

    if do_nocp:
        # Everything in monomer basis
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                nocp_compute_list[nbody].add( (x, x) )

    if do_vmfc:
        # Like a CP for all combinations of pairs or greater
        for nbody in nbody_range:
            for cp_combos in it.combinations(fragment_range, nbody):
                basis_tuple = tuple(cp_combos)
                for interior_nbody in nbody_range:
                    for x in it.combinations(cp_combos, interior_nbody):
                        combo_tuple = (x, basis_tuple)
                        vmfc_compute_list[interior_nbody].add( combo_tuple )
                        vmfc_level_list[len(basis_tuple)].add( combo_tuple )

    # Build a comprehensive compute_range
    compute_list = {x:set() for x in nbody_range}
    for n in nbody_range:
        compute_list[n] |= cp_compute_list[n]
        compute_list[n] |= nocp_compute_list[n]
        compute_list[n] |= vmfc_compute_list[n]
        core.print_out("        Number of %d-body computations:     %d\n" % (n, len(compute_list[n])))


    # Build size and slices dictionaries
    fragment_size_dict = {frag: molecule.extract_subsets(frag).natom() for
                                           frag in range(1, max_frag+1)}

    start = 0
    fragment_slice_dict = {}
    for k, v in fragment_size_dict.items():
        fragment_slice_dict[k] = slice(start, start + v)
        start += v

    molecule_total_atoms = sum(fragment_size_dict.values())

    # Now compute the energies
    energies_dict = {}
    ptype_dict = {}
    for n in compute_list.keys():
        core.print_out("\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out("\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" %
                                                                    (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            ptype_dict[pair] = func(method_string, molecule=current_mol, **kwargs)
            energies_dict[pair] = core.get_variable("CURRENT ENERGY")
            core.print_out("\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" %
                                                                (str(pair[0]), str(pair[1]), energies_dict[pair]))

            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    # Final dictionaries
    cp_energy_by_level   = {n: 0.0 for n in nbody_range}
    nocp_energy_by_level = {n: 0.0 for n in nbody_range}

    cp_energy_body_dict =   {n: 0.0 for n in nbody_range}
    nocp_energy_body_dict = {n: 0.0 for n in nbody_range}
    vmfc_energy_body_dict = {n: 0.0 for n in nbody_range}

    # Build out ptype dictionaries if needed
    if ptype != 'energy':
        if ptype == 'gradient':
            arr_shape = (molecule_total_atoms, 3)
        elif ptype == 'hessian':
            arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3)
        else:
            raise KeyError("N-Body: ptype '%s' not recognized" % ptype)

        cp_ptype_by_level   =  {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_by_level =  {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}

        cp_ptype_body_dict   = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
    else:
        cp_ptype_by_level, cp_ptype_body_dict = None, None
        nocp_ptype_by_level, nocp_ptype_body_dict = None, None
        vmfc_ptype_body_dict = None


    # Sum up all of the levels
    for n in nbody_range:

        # Energy
        cp_energy_by_level[n]   = sum(energies_dict[v] for v in cp_compute_list[n])
        nocp_energy_by_level[n] = sum(energies_dict[v] for v in nocp_compute_list[n])

        # Special vmfc case
        if n > 1:
            vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1]
        for tup in vmfc_level_list[n]:
            vmfc_energy_body_dict[n] += ((-1) ** (n - len(tup[0]))) * energies_dict[tup]


        # Do ptype
        if ptype != 'energy':
            _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      cp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      nocp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, vmfc_level_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      vmfc_ptype_by_level[n], vmfc=True)

    # Compute cp energy and ptype
    if do_cp:
        for n in nbody_range:
            if n == max_frag:
                cp_energy_body_dict[n] = cp_energy_by_level[n]
                if ptype != 'energy':
                    cp_ptype_body_dict[n][:] = cp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk =  nCr(max_frag - k - 1, n - k)
                sign = ((-1) ** (n - k))
                value = cp_energy_by_level[k]
                cp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = cp_ptype_by_level[k]
                    cp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)")
        cp_interaction_energy = cp_energy_body_dict[max_nbody] - cp_energy_body_dict[1]
        core.set_variable('Counterpoise Corrected Total Energy', cp_energy_body_dict[max_nbody])
        core.set_variable('Counterpoise Corrected Interaction Energy', cp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, cp_energy_body_dict[n] - cp_energy_body_dict[1])

    # Compute nocp energy and ptype
    if do_nocp:
        for n in nbody_range:
            if n == max_frag:
                nocp_energy_body_dict[n] = nocp_energy_by_level[n]
                if ptype != 'energy':
                    nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk =  nCr(max_frag - k - 1, n - k)
                sign = ((-1) ** (n - k))
                value = nocp_energy_by_level[k]
                nocp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = nocp_ptype_by_level[k]
                    nocp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(nocp_energy_body_dict, "Non-Counterpoise Corrected (NoCP)")
        nocp_interaction_energy = nocp_energy_body_dict[max_nbody] - nocp_energy_body_dict[1]
        core.set_variable('Non-Counterpoise Corrected Total Energy', nocp_energy_body_dict[max_nbody])
        core.set_variable('Non-Counterpoise Corrected Interaction Energy', nocp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1])


    # Compute vmfc energy and ptype
    if do_vmfc:
        _print_nbody_energy(vmfc_energy_body_dict, "Valiron-Mayer Function Couterpoise (VMFC)")
        vmfc_interaction_energy = vmfc_energy_body_dict[max_nbody] - vmfc_energy_body_dict[1]
        core.set_variable('Valiron-Mayer Function Couterpoise Total Energy', vmfc_energy_body_dict[max_nbody])
        core.set_variable('Valiron-Mayer Function Couterpoise Interaction Energy', vmfc_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1])

    if return_method == 'cp':
        ptype_body_dict = cp_ptype_body_dict
        energy_body_dict = cp_energy_body_dict
    elif return_method == 'nocp':
        ptype_body_dict = nocp_ptype_body_dict
        energy_body_dict = nocp_energy_body_dict
    elif return_method == 'vmfc':
        ptype_body_dict = vmfc_ptype_body_dict
        energy_body_dict = vmfc_energy_body_dict
    else:
        raise ValidationError("N-Body Wrapper: Invalid return type. Should never be here, please post this error on github.")


    # Figure out and build return types
    if return_total_data:
        ret_energy = energy_body_dict[max_nbody]
    else:
        ret_energy = energy_body_dict[max_nbody]
        ret_energy -= energy_body_dict[1]


    if ptype != 'energy':
        if return_total_data:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
        else:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
            np_final_ptype -= ptype_body_dict[1]

            ret_ptype = core.Matrix.from_array(np_final_ptype)
    else:
        ret_ptype = ret_energy

    # Build and set a wavefunction
    wfn = core.Wavefunction.build(molecule, 'sto-3g')
    wfn.nbody_energy = energies_dict
    wfn.nbody_ptype = ptype_dict
    wfn.nbody_body_energy = energy_body_dict
    wfn.nbody_body_ptype = ptype_body_dict

    if ptype == 'gradient':
        wfn.set_gradient(ret_ptype)
    elif ptype == 'hessian':
        wfn.set_hessian(ret_ptype)

    core.set_variable("CURRENT ENERGY", ret_energy)

    if return_wfn:
        return (ret_ptype, wfn)
    else:
        return ret_ptype
Exemplo n.º 7
0
def run_gaussian_2(name, **kwargs):

    # throw an exception for open-shells
    if (core.get_option('SCF','REFERENCE') != 'RHF' ):
        raise ValidationError("""g2 computations require "reference rhf".""")

    # stash user options:
    optstash = p4util.OptionsState(
        ['FNOCC','COMPUTE_TRIPLES'],
        ['FNOCC','COMPUTE_MP4_TRIPLES'],
        ['FREEZE_CORE'],
        ['MP2_TYPE'],
        ['SCF','SCF_TYPE'])

    # override default scf_type
    core.set_local_option('SCF','SCF_TYPE','PK')

    # optimize geometry at scf level
    core.clean()
    core.set_global_option('BASIS',"6-31G(D)")
    driver.optimize('scf')
    core.clean()

    # scf frequencies for zpe
    # NOTE This line should not be needed, but without it there's a seg fault
    scf_e, ref = driver.frequency('scf', return_wfn=True)

    # thermodynamic properties
    du = core.get_variable('INTERNAL ENERGY CORRECTION')
    dh = core.get_variable('ENTHALPY CORRECTION')
    dg = core.get_variable('GIBBS FREE ENERGY CORRECTION')

    freqs   = ref.frequencies()
    nfreq   = freqs.dim(0)
    freqsum = 0.0
    for i in range(0, nfreq):
        freqsum += freqs.get(i)
    zpe = freqsum / constants.hartree2wavenumbers * 0.8929 * 0.5
    core.clean()

    # optimize geometry at mp2 (no frozen core) level
    # note: freeze_core isn't an option in MP2
    core.set_global_option('FREEZE_CORE',"FALSE")
    core.set_global_option('MP2_TYPE', 'CONV')
    driver.optimize('mp2')
    core.clean()

    # qcisd(t)
    core.set_local_option('FNOCC','COMPUTE_MP4_TRIPLES',"TRUE")
    core.set_global_option('FREEZE_CORE',"TRUE")
    core.set_global_option('BASIS',"6-311G(D_P)")
    ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs)

    # HLC: high-level correction based on number of valence electrons
    nirrep = ref.nirrep()
    frzcpi = ref.frzcpi()
    nfzc = 0
    for i in range (0,nirrep):
        nfzc += frzcpi[i]
    nalpha = ref.nalpha() - nfzc
    nbeta  = ref.nbeta() - nfzc
    # hlc of gaussian-2
    hlc = -0.00481 * nalpha -0.00019 * nbeta
    # hlc of gaussian-1
    hlc1 = -0.00614 * nalpha

    eqci_6311gdp = core.get_variable("QCISD(T) TOTAL ENERGY")
    emp4_6311gd  = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311gd  = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for diffuse functions
    core.set_global_option('BASIS',"6-311+G(D_P)")
    driver.energy('mp4')
    emp4_6311pg_dp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311pg_dp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for polarization functions
    core.set_global_option('BASIS',"6-311G(2DF_P)")
    driver.energy('mp4')
    emp4_6311g2dfp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311g2dfp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # big basis mp2
    core.set_global_option('BASIS',"6-311+G(3DF_2P)")
    #run_fnocc('_mp2',**kwargs)
    driver.energy('mp2')
    emp2_big = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()
    eqci       = eqci_6311gdp
    e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp
    e_plus     = emp4_6311pg_dp - emp4_6311gd
    e_2df      = emp4_6311g2dfp - emp4_6311gd

    eg2 = eqci + e_delta_g2 + e_plus + e_2df
    eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe

    core.print_out('\n')
    core.print_out('  ==>  G1/G2 Energy Components  <==\n')
    core.print_out('\n')
    core.print_out('        QCISD(T):            %20.12lf\n' % eqci)
    core.print_out('        E(Delta):            %20.12lf\n' % e_delta_g2)
    core.print_out('        E(2DF):              %20.12lf\n' % e_2df)
    core.print_out('        E(+):                %20.12lf\n' % e_plus)
    core.print_out('        E(G1 HLC):           %20.12lf\n' % hlc1)
    core.print_out('        E(G2 HLC):           %20.12lf\n' % hlc)
    core.print_out('        E(ZPE):              %20.12lf\n' % zpe)
    core.print_out('\n')
    core.print_out('  ==>  0 Kelvin Results  <==\n')
    core.print_out('\n')
    eg2_0k = eg2 + zpe + hlc
    core.print_out('        G1:                  %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe))
    core.print_out('        G2(MP2):             %20.12lf\n' % eg2_mp2_0k)
    core.print_out('        G2:                  %20.12lf\n' % eg2_0k)

    core.set_variable("G1 TOTAL ENERGY",eqci + e_plus + e_2df + hlc1 + zpe)
    core.set_variable("G2 TOTAL ENERGY",eg2_0k)
    core.set_variable("G2(MP2) TOTAL ENERGY",eg2_mp2_0k)

    core.print_out('\n')
    T = core.get_global_option('T')
    core.print_out('  ==>  %3.0lf Kelvin Results  <==\n'% T)
    core.print_out('\n')

    internal_energy = eg2_mp2_0k + du - zpe / 0.8929
    enthalpy        = eg2_mp2_0k + dh - zpe / 0.8929
    gibbs           = eg2_mp2_0k + dg - zpe / 0.8929

    core.print_out('        G2(MP2) energy:      %20.12lf\n' % internal_energy )
    core.print_out('        G2(MP2) enthalpy:    %20.12lf\n' % enthalpy)
    core.print_out('        G2(MP2) free energy: %20.12lf\n' % gibbs)
    core.print_out('\n')

    core.set_variable("G2(MP2) INTERNAL ENERGY",internal_energy)
    core.set_variable("G2(MP2) ENTHALPY",enthalpy)
    core.set_variable("G2(MP2) FREE ENERGY",gibbs)

    internal_energy = eg2_0k + du - zpe / 0.8929
    enthalpy        = eg2_0k + dh - zpe / 0.8929
    gibbs           = eg2_0k + dg - zpe / 0.8929

    core.print_out('        G2 energy:           %20.12lf\n' % internal_energy )
    core.print_out('        G2 enthalpy:         %20.12lf\n' % enthalpy)
    core.print_out('        G2 free energy:      %20.12lf\n' % gibbs)

    core.set_variable("CURRENT ENERGY",eg2_0k)

    core.set_variable("G2 INTERNAL ENERGY",internal_energy)
    core.set_variable("G2 ENTHALPY",enthalpy)
    core.set_variable("G2 FREE ENERGY",gibbs)

    core.clean()

    optstash.restore()

    # return 0K g2 results
    return eg2_0k
Exemplo n.º 8
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = core.get_variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the inital diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException("Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta).")

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" %
                                    (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" %
                                    (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp


    # Limited RAS functionality
    if core.get_local_option("DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out("\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n")
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out("        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = core.get_variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = core.get_variable("MCSCF TOTAL ENERGY")

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break


        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out("      !Warning. Augmented Hessian did not converge. Taking an approx step.\n")
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out('      Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.Matrix.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"),
                                            False, False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.Matrix.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.Matrix.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        core.set_variable("CURRENT ENERGY", current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)


    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True)

    # Set final energy
    core.set_variable("CURRENT ENERGY", core.get_variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn
Exemplo n.º 9
0
def frac_nuke(name, **kwargs):
    """Pull all the electrons out, one at a time"""
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        # NYI ["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])

    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError(
            """frac_nuke requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out(
            """  Requested procedure `frac_nuke` does not make use of molecular symmetry: """
            """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    foccs = kwargs.get('foccs',
                       [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    N = 0
    for A in range(molecule.natom()):
        N += molecule.Z(A)
    N -= charge0
    N = int(N)
    Nb = int((N - mult0 + 1) / 2)
    Na = int(N - Nb)

    charge = charge0
    mult = mult0

    # By default, nuke all the electrons
    Nmin = 0
    if 'nmax' in kwargs:
        Nmin = N - int(kwargs['nmax'])

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    stats_filename = root + '.stats.dat'

    # => Traverse <= #
    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    Ns = []
    energies = []
    potentials = []
    convs = []
    stats = []

    # Run one SCF to burn things in
    E, wfn = driver.energy('scf',
                           dft_functional=name,
                           return_wfn=True,
                           molecule=molecule,
                           **kwargs)

    # Determine H**O
    eps_a = wfn.epsilon_a()
    eps_b = wfn.epsilon_b()
    eps_a.print_out()
    if Na == Nb:
        H**O = -Nb
    elif Nb == 0:
        H**O = Na
    else:
        E_a = eps_a.get(int(Na - 1))
        E_b = eps_b.get(int(Nb - 1))
        if E_a >= E_b:
            H**O = Na
        else:
            H**O = -Nb

    stats.append("""    %6d %6d %6d %6d %6d %6d\n""" %
                 (N, Na, Nb, charge, mult, H**O))

    if H**O > 0:
        Na -= 1
    else:
        Nb -= 1
    charge += 1
    mult = Na - Nb + 1

    core.set_local_option("SCF", "DF_INTS_IO", "LOAD")
    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    # Nuke 'em Rico!
    for Nintegral in range(N, Nmin, -1):

        # Nuke the current H**O
        for occ in foccs:

            core.set_local_option("SCF", "FRAC_OCC", [H**O])
            core.set_local_option("SCF", "FRAC_VAL", [occ])

            E, wfn = driver.energy('scf',
                                   dft_functional=name,
                                   return_wfn=True,
                                   molecule=molecule,
                                   **kwargs)
            C = 1
            if E == 0.0:
                E = core.get_variable('SCF ITERATION ENERGY')
                C = 0

            if H**O > 0:
                eps = wfn.epsilon_a()
                potentials.append(eps.np[H**O - 1])
            else:
                eps = wfn.epsilon_b()
                potentials.append(eps.np[-H**O - 1])

            Ns.append(Nintegral + occ - 1.0)
            energies.append(E)
            convs.append(C)

            core.set_local_option("SCF", "FRAC_START", 2)
            # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
            core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
            core.set_local_option("SCF", "GUESS", "READ")

        # Set the next charge/mult
        molecule.set_molecular_charge(charge)
        molecule.set_multiplicity(mult)

        # Determine H**O
        print('DGAS: What ref should this point to?')
        #ref = core.legacy_wavefunction()
        eps_a = wfn.epsilon_a()
        eps_b = wfn.epsilon_b()
        if Na == Nb:
            H**O = -Nb
        elif Nb == 0:
            H**O = Na
        else:
            E_a = eps_a.np[int(Na - 1)]
            E_b = eps_b.np[int(Nb - 1)]
            if E_a >= E_b:
                H**O = Na
            else:
                H**O = -Nb

        stats.append("""    %6d %6d %6d %6d %6d %6d\n""" %
                     (Nintegral - 1, Na, Nb, charge, mult, H**O))

        if H**O > 0:
            Na -= 1
        else:
            Nb -= 1
        charge += 1
        mult = Na - Nb + 1

    core.set_local_option("SCF", "DF_INTS_IO", "NONE")

    # => Print the results out <= #
    E = {}
    core.print_out("""\n    ==> Fractional Occupation Nuke Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" %
                   ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(Ns)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" %
                       (Ns[k], energies[k], potentials[k], convs[k]))
        E[Ns[k]] = energies[k]

    core.print_out('\n')
    core.print_out("""    %6s %6s %6s %6s %6s %6s\n""" %
                   ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O'))
    for line in stats:
        core.print_out(line)

    core.print_out(
        '\n    "You shoot a nuke down a bug hole, you got a lot of dead bugs"\n'
    )
    core.print_out('            -Starship Troopers\n')

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" %
                 ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(Ns)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" %
                     (Ns[k], energies[k], potentials[k], convs[k]))

    with open(stats_filename, 'w') as fh:
        fh.write("""    %6s %6s %6s %6s %6s %6s\n""" %
                 ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O'))
        for line in stats:
            fh.write(line)

    optstash.restore()
    return E
Exemplo n.º 10
0
def compute_nbody_components(func, method_string, metadata):
    """Computes requested N-body components.

    Performs requested computations for psi4::Molecule object `molecule` according to
    `compute_list` with function `func` at `method_string` level of theory.

    Parameters
    ----------
    func : {'energy', 'gradient', 'hessian'}
        Function object to be called within N-Body procedure.
    method_string : str
        Indicates level of theory to be passed to function `func`.
    metadata : dict of str
        Dictionary of N-body metadata.

        Required ``'key': value`` pairs:
        ``'compute_list'``: dict of int: set
            List of computations to perform.  Keys indicate body-levels, e.g,. `compute_list[2]` is the
            list of all 2-body computations required.
        ``'kwargs'``: dict
            Arbitrary keyword arguments to be passed to function `func`.

    Returns
    -------
    dict of str: dict
        Dictionary containing computed N-body components.

        Contents:
        ``'energies'``: dict of set: float64
               Dictionary containing all energy components required for given N-body procedure.
        ``'ptype'``: dict of set: float64 or dict of set: psi4.Matrix
               Dictionary of returned quantities from calls of function `func` during N-body computations
        ``'intermediates'``: dict of str: float64
               Dictionary of psivars for intermediate N-body computations to be set at the end of the
               N-body procedure.
    """
    # Get required metadata
    kwargs = metadata['kwargs']
    molecule = metadata['molecule']
    #molecule = core.get_active_molecule()
    compute_list = metadata['compute_dict']['all']

    # Now compute the energies
    energies_dict = {}
    ptype_dict = {}
    intermediates_dict = {}
    for n in compute_list.keys():
        core.print_out("\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out("\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" %
                                                                    (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            # Save energies info
            ptype_dict[pair] = func(method_string, molecule=current_mol, **kwargs)
            energies_dict[pair] = core.get_variable("CURRENT ENERGY")
            var_key = "N-BODY (%s)@(%s) TOTAL ENERGY" % (', '.join([str(i) for i in pair[0]]), 
                                                          ', '.join([str(i) for i in pair[1]]))
            intermediates_dict[var_key] = core.get_variable("CURRENT ENERGY")
            core.print_out("\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" %
                                                                (str(pair[0]), str(pair[1]), energies_dict[pair]))
            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    return {'energies': energies_dict, 'ptype': ptype_dict, 'intermediates': intermediates_dict}
Exemplo n.º 11
0
def frac_traverse(name, **kwargs):
    """Scan electron occupancy from +1 electron to -1.

    Parameters
    ----------
    name : string or function
        DFT functional string name or function defining functional
        whose omega is to be optimized.
    molecule : :ref:`molecule <op_py_molecule>`, optional
        Target molecule (neutral) for which omega is to be tuned, if not last defined.
    cation_mult : int, optional
        Multiplicity of cation, if not neutral multiplicity + 1.
    anion_mult : int, optional
        Multiplicity of anion, if not neutral multiplicity + 1.
    frac_start : int, optional
        Iteration at which to start frac procedure when not reading previous
        guess. Defaults to 25.
    HOMO_occs : list, optional
        Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`.
    LUMO_occs : list, optional
        Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`.
    H**O : int, optional
        Index of H**O.
    LUMO : int, optional
        Index of LUMO.
    frac_diis : bool, optional
        Do use DIIS for non-1.0-occupied points?
    neutral_guess : bool, optional
        Do use neutral orbitals as guess for the anion?
    hf_guess: bool, optional
        Do use UHF guess before UKS?
    continuous_guess : bool, optional
        Do carry along guess rather than reguessing at each occupation?
    filename : str, optional
        Result filename, if not name of molecule.

    Returns
    -------
    dict
        Dictionary associating SCF energies with occupations.

    """
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ['SCF', 'REFERENCE'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        #["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])
    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError("""frac_traverse requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out("""  Requested procedure `frac_traverse` does not make use of molecular symmetry: """
                       """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    chargep = charge0 + 1
    chargem = charge0 - 1

    multp = kwargs.get('cation_mult', mult0 + 1)
    multm = kwargs.get('anion_mult', mult0 + 1)

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    HOMO_occs = kwargs.get('HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])
    LUMO_occs = kwargs.get('LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    Z = 0
    for A in range(molecule.natom()):
        Z += molecule.Z(A)
    Z -= charge0
    H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2))
    LUMO = kwargs.get('LUMO', H**O + 1)

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, use the neutral orbitals as a guess for the anion
    neutral_guess = kwargs.get('neutral_guess', True)

    # By default, burn-in with UHF first, if UKS
    hf_guess = False
    if core.get_local_option('SCF', 'REFERENCE') == 'UKS':
        hf_guess = kwargs.get('hf_guess', True)

    # By default, re-guess at each N
    continuous_guess = kwargs.get('continuous_guess', False)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    # => Traverse <= #
    occs = []
    energies = []
    potentials = []
    convs = []

    # => Run the neutral for its orbitals, if requested <= #

    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    old_guess = core.get_local_option("SCF", "GUESS")
    if (neutral_guess):
        if (hf_guess):
            core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the anion first <= #

    molecule.set_molecular_charge(chargem)
    molecule.set_multiplicity(multm)

    # => Burn the anion in with hf, if requested <= #
    if hf_guess:
        core.set_local_option("SCF", "REFERENCE","UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "REFERENCE", "UKS")
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)
    # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    for occ in LUMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [LUMO])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)
        C = 1
        if E == 0.0:
            E = core.get_variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(LUMO) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(LUMO) - 1))

        occs.append(occ)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        #core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")


    # => Run the neutral next <= #

    molecule.set_molecular_charge(charge0)
    molecule.set_multiplicity(mult0)

    # Burn the neutral in with hf, if requested <= #

    if not continuous_guess:
        core.set_local_option("SCF", "GUESS", old_guess)
        if hf_guess:
            core.set_local_option("SCF", "FRAC_START", 0)
            core.set_local_option("SCF", "REFERENCE", "UHF")
            driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
            core.set_local_option("SCF", "REFERENCE", "UKS")
            core.set_local_option("SCF", "GUESS", "READ")
        # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    for occ in HOMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [H**O])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)
        C = 1
        if E == 0.0:
            E = core.get_variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(H**O) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(H**O) - 1))

        occs.append(occ - 1.0)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Print the results out <= #
    E = {}
    core.print_out("""\n    ==> Fractional Occupation Traverse Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(occs)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k]))
        E[occs[k]] = energies[k]

    core.print_out("""
    You trying to be a hero Watkins?
    Just trying to kill some bugs sir!
            -Starship Troopers""")

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(occs)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k]))

    optstash.restore()
    return E
Exemplo n.º 12
0
def frac_nuke(name, **kwargs):
    """Pull all the electrons out, one at a time"""
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        # NYI ["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])

    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError("""frac_nuke requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out("""  Requested procedure `frac_nuke` does not make use of molecular symmetry: """
                       """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    foccs = kwargs.get('foccs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    N = 0
    for A in range(molecule.natom()):
        N += molecule.Z(A)
    N -= charge0
    N = int(N)
    Nb = int((N - mult0 + 1) / 2)
    Na = int(N - Nb)

    charge = charge0
    mult = mult0

    # By default, nuke all the electrons
    Nmin = 0
    if 'nmax' in kwargs:
        Nmin = N - int(kwargs['nmax'])

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    stats_filename = root + '.stats.dat'

    # => Traverse <= #
    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    Ns = []
    energies = []
    potentials = []
    convs = []
    stats = []

    # Run one SCF to burn things in
    E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)

    # Determine H**O
    eps_a = wfn.epsilon_a()
    eps_b = wfn.epsilon_b()
    eps_a.print_out()
    if Na == Nb:
        H**O = -Nb
    elif Nb == 0:
        H**O = Na
    else:
        E_a = eps_a.get(int(Na - 1))
        E_b = eps_b.get(int(Nb - 1))
        if E_a >= E_b:
            H**O = Na
        else:
            H**O = -Nb

    stats.append("""    %6d %6d %6d %6d %6d %6d\n""" % (N, Na, Nb, charge, mult, H**O))

    if H**O > 0:
        Na -= 1
    else:
        Nb -= 1
    charge += 1
    mult = Na - Nb + 1

    core.set_local_option("SCF", "DF_INTS_IO", "LOAD")
    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    # Nuke 'em Rico!
    for Nintegral in range(N, Nmin, -1):

        # Nuke the current H**O
        for occ in foccs:

            core.set_local_option("SCF", "FRAC_OCC", [H**O])
            core.set_local_option("SCF", "FRAC_VAL", [occ])

            E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs)
            C = 1
            if E == 0.0:
                E = core.get_variable('SCF ITERATION ENERGY')
                C = 0

            if H**O > 0:
                eps = wfn.epsilon_a()
                potentials.append(eps.np[H**O - 1])
            else:
                eps = wfn.epsilon_b()
                potentials.append(eps.np[-H**O - 1])

            Ns.append(Nintegral + occ - 1.0)
            energies.append(E)
            convs.append(C)

            core.set_local_option("SCF", "FRAC_START", 2)
            # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
            core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
            core.set_local_option("SCF", "GUESS", "READ")

        # Set the next charge/mult
        molecule.set_molecular_charge(charge)
        molecule.set_multiplicity(mult)

        # Determine H**O
        print('DGAS: What ref should this point to?')
        #ref = core.legacy_wavefunction()
        eps_a = wfn.epsilon_a()
        eps_b = wfn.epsilon_b()
        if Na == Nb:
            H**O = -Nb
        elif Nb == 0:
            H**O = Na
        else:
            E_a = eps_a.np[int(Na - 1)]
            E_b = eps_b.np[int(Nb - 1)]
            if E_a >= E_b:
                H**O = Na
            else:
                H**O = -Nb

        stats.append("""    %6d %6d %6d %6d %6d %6d\n""" % (Nintegral-1, Na, Nb, charge, mult, H**O))

        if H**O > 0:
            Na -= 1
        else:
            Nb -= 1
        charge += 1
        mult = Na - Nb + 1

    core.set_local_option("SCF", "DF_INTS_IO", "NONE")

    # => Print the results out <= #
    E = {}
    core.print_out("""\n    ==> Fractional Occupation Nuke Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(Ns)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k]))
        E[Ns[k]] = energies[k]

    core.print_out('\n')
    core.print_out("""    %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O'))
    for line in stats:
        core.print_out(line)

    core.print_out('\n    "You shoot a nuke down a bug hole, you got a lot of dead bugs"\n')
    core.print_out('            -Starship Troopers\n')

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(Ns)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k]))

    with open(stats_filename, 'w') as fh:
        fh.write("""    %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O'))
        for line in stats:
            fh.write(line)

    optstash.restore()
    return E
Exemplo n.º 13
0
def run_sapt_dft(name, **kwargs):
    optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE'],
                                   ['SCF', 'DFT_FUNCTIONAL'],
                                   ['SCF', 'DFT_GRAC_SHIFT'],
                                   ['SCF', 'SAVE_JK'])

    core.tstart()
    # Alter default algorithm
    if not core.has_option_changed('SCF', 'SCF_TYPE'):
        core.set_local_option('SCF', 'SCF_TYPE', 'DF')

    core.prepare_options_for_module("SAPT")

    # Get the molecule of interest
    ref_wfn = kwargs.get('ref_wfn', None)
    if ref_wfn is None:
        sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
    else:
        core.print_out(
            'Warning! SAPT argument "ref_wfn" is only able to use molecule information.'
        )
        sapt_dimer = ref_wfn.molecule()

    # Shifting to C1 so we need to copy the active molecule
    if sapt_dimer.schoenflies_symbol() != 'c1':
        core.print_out(
            '  SAPT does not make use of molecular symmetry, further calculations in C1 point group.\n'
        )

    # Make sure the geometry doesnt shift or rotate
    sapt_dimer = sapt_dimer.clone()
    sapt_dimer.reset_point_group('c1')
    sapt_dimer.fix_orientation(True)
    sapt_dimer.fix_com(True)
    sapt_dimer.update_geometry()

    # Grab overall settings
    mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A")
    mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B")
    do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF")
    sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")

    # Print out the title and some information
    core.print_out("\n")
    core.print_out(
        "         ---------------------------------------------------------\n")
    core.print_out("         " + "SAPT(DFT) Procedure".center(58) + "\n")
    core.print_out("\n")
    core.print_out("         " + "by Daniel G. A. Smith".center(58) + "\n")
    core.print_out(
        "         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" %
                   str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" %
                   ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" %
                   core.get_option("SCF", "SCF_TYPE"))
    core.print_out("\n")
    core.print_out("   Required computations:\n")
    if (do_delta_hf):
        core.print_out("     HF  (Dimer)\n")
        core.print_out("     HF  (Monomer A)\n")
        core.print_out("     HF  (Monomer B)\n")
    core.print_out("     DFT (Monomer A)\n")
    core.print_out("     DFT (Monomer B)\n")
    core.print_out("\n")

    if (mon_a_shift == 0.0) or (mon_b_shift == 0.0):
        raise ValidationError(
            'SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".')

    if (core.get_option('SCF', 'REFERENCE') != 'RHF'):
        raise ValidationError(
            'SAPT(DFT) currently only supports restricted references.')

    nfrag = sapt_dimer.nfragments()
    if nfrag != 2:
        raise ValidationError(
            'SAPT requires active molecule to have 2 fragments, not %s.' %
            (nfrag))

    monomerA = sapt_dimer.extract_subsets(1, 2)
    monomerA.set_name('monomerA')
    monomerB = sapt_dimer.extract_subsets(2, 1)
    monomerB.set_name('monomerB')

    core.IO.set_default_namespace('dimer')
    data = {}

    core.set_global_option("SAVE_JK", True)
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        # core.set_global_option('DF_INTS_IO', 'LOAD')
        core.set_global_option('DF_INTS_IO', 'SAVE')

    # # Compute dimer wavefunction
    hf_cache = {}
    hf_wfn_dimer = None
    if do_delta_hf:
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.set_global_option('DF_INTS_IO', 'SAVE')

        hf_data = {}
        hf_wfn_dimer = scf_helper("SCF",
                                  molecule=sapt_dimer,
                                  banner="SAPT(DFT): delta HF Dimer",
                                  **kwargs)
        hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY")

        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'dimer', 'monomerA')
        hf_wfn_A = scf_helper("SCF",
                              molecule=monomerA,
                              banner="SAPT(DFT): delta HF Monomer A",
                              **kwargs)
        hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY")

        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerA', 'monomerB')
        hf_wfn_B = scf_helper("SCF",
                              molecule=monomerB,
                              banner="SAPT(DFT): delta HF Monomer B",
                              **kwargs)
        hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY")

        # Move it back to monomer A
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerB', 'dimer')

        core.print_out("\n")
        core.print_out(
            "         ---------------------------------------------------------\n"
        )
        core.print_out("         " +
                       "SAPT(DFT): delta HF Segement".center(58) + "\n")
        core.print_out("\n")
        core.print_out("         " +
                       "by Daniel G. A. Smith and Rob Parrish".center(58) +
                       "\n")
        core.print_out(
            "         ---------------------------------------------------------\n"
        )
        core.print_out("\n")

        # Build cache and JK
        sapt_jk = hf_wfn_B.jk()

        hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B,
                                                     sapt_jk, True)

        # Electostatics
        elst = sapt_jk_terms.electrostatics(hf_cache, True)
        hf_data.update(elst)

        # Exchange
        exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True)
        hf_data.update(exch)

        # Induction
        ind = sapt_jk_terms.induction(
            hf_cache,
            sapt_jk,
            True,
            maxiter=core.get_option("SAPT", "MAXITER"),
            conv=core.get_option("SAPT", "D_CONVERGENCE"))
        hf_data.update(ind)

        dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data[
            "HF MONOMER B"]

        core.print_out("\n")
        core.print_out(
            print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value))

        data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF")

    if hf_wfn_dimer is None:
        dimer_wfn = core.Wavefunction.build(sapt_dimer,
                                            core.get_global_option("BASIS"))
    else:
        dimer_wfn = hf_wfn_dimer

    # Set the primary functional
    core.set_global_option("DFT_FUNCTIONAL",
                           core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL"))
    core.set_local_option('SCF', 'REFERENCE', 'RKS')

    # Compute Monomer A wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'dimer', 'monomerA')

    if mon_a_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift)

    # Save the JK object
    core.IO.set_default_namespace('monomerA')
    wfn_A = scf_helper("SCF",
                       molecule=monomerA,
                       banner="SAPT(DFT): DFT Monomer A",
                       **kwargs)
    data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Compute Monomer B wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'monomerA', 'monomerB')

    if mon_b_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift)

    core.IO.set_default_namespace('monomerB')
    wfn_B = scf_helper("SCF",
                       molecule=monomerB,
                       banner="SAPT(DFT): DFT Monomer B",
                       **kwargs)
    data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Print out the title and some information
    core.print_out("\n")
    core.print_out(
        "         ---------------------------------------------------------\n")
    core.print_out("         " +
                   "SAPT(DFT): Intermolecular Interaction Segment".center(58) +
                   "\n")
    core.print_out("\n")
    core.print_out("         " +
                   "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n")
    core.print_out(
        "         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" %
                   str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" %
                   ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" %
                   core.get_option("SCF", "SCF_TYPE"))

    # Build cache and JK
    sapt_jk = wfn_B.jk()

    cache = sapt_jk_terms.build_sapt_jk_cache(wfn_A, wfn_B, sapt_jk, True)

    # Electostatics
    elst = sapt_jk_terms.electrostatics(cache, True)
    data.update(elst)

    # Exchange
    exch = sapt_jk_terms.exchange(cache, sapt_jk, True)
    data.update(exch)

    # Induction
    ind = sapt_jk_terms.induction(cache,
                                  sapt_jk,
                                  True,
                                  maxiter=core.get_option("SAPT", "MAXITER"),
                                  conv=core.get_option("SAPT",
                                                       "D_CONVERGENCE"))
    data.update(ind)

    # Dispersion
    primary_basis = wfn_A.basisset()
    core.print_out("\n")
    aux_basis = core.BasisSet.build(sapt_dimer, "DF_BASIS_MP2",
                                    core.get_option("DFMP2", "DF_BASIS_MP2"),
                                    "RIFIT", core.get_global_option('BASIS'))
    fdds_disp = sapt_mp2_terms.df_fdds_dispersion(primary_basis, aux_basis,
                                                  cache)
    data.update(fdds_disp)

    if core.get_option("SAPT", "SAPT_DFT_MP2_DISP_ALG") == "FISAPT":
        mp2_disp = sapt_mp2_terms.df_mp2_fisapt_dispersion(wfn_A,
                                                           primary_basis,
                                                           aux_basis,
                                                           cache,
                                                           do_print=True)
    else:
        mp2_disp = sapt_mp2_terms.df_mp2_sapt_dispersion(dimer_wfn,
                                                         wfn_A,
                                                         wfn_B,
                                                         primary_basis,
                                                         aux_basis,
                                                         cache,
                                                         do_print=True)
    data.update(mp2_disp)

    # Print out final data
    core.print_out("\n")
    core.print_out(print_sapt_dft_summary(data, "SAPT(DFT)"))

    core.tstop()

    return dimer_wfn
Exemplo n.º 14
0
def run_sapt_dft(name, **kwargs):
    optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'],
                                   ['SCF', 'REFERENCE'],
                                   ['SCF', 'DFT_FUNCTIONAL'],
                                   ['SCF', 'DFT_GRAC_SHIFT'],
                                   ['SCF', 'SAVE_JK'])

    core.tstart()
    # Alter default algorithm
    if not core.has_option_changed('SCF', 'SCF_TYPE'):
        core.set_local_option('SCF', 'SCF_TYPE', 'DF')

    core.prepare_options_for_module("SAPT")

    # Get the molecule of interest
    ref_wfn = kwargs.get('ref_wfn', None)
    if ref_wfn is None:
        sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
    else:
        core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.')
        sapt_dimer = ref_wfn.molecule()

    sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer")

    # Grab overall settings
    mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A")
    mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B")
    do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF")
    sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")

    # Print out the title and some information
    core.print_out("\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("         " + "SAPT(DFT) Procedure".center(58) + "\n")
    core.print_out("\n")
    core.print_out("         " + "by Daniel G. A. Smith".center(58) + "\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" % str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" % ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" % core.get_option("SCF", "SCF_TYPE"))
    core.print_out("\n")
    core.print_out("   Required computations:\n")
    if (do_delta_hf):
        core.print_out("     HF  (Dimer)\n")
        core.print_out("     HF  (Monomer A)\n")
        core.print_out("     HF  (Monomer B)\n")
    core.print_out("     DFT (Monomer A)\n")
    core.print_out("     DFT (Monomer B)\n")
    core.print_out("\n")

    if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)):
        raise ValidationError('SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".')

    if (core.get_option('SCF', 'REFERENCE') != 'RHF'):
        raise ValidationError('SAPT(DFT) currently only supports restricted references.')


    core.IO.set_default_namespace('dimer')
    data = {}

    core.set_global_option("SAVE_JK", True)
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        # core.set_global_option('DF_INTS_IO', 'LOAD')
        core.set_global_option('DF_INTS_IO', 'SAVE')

    # # Compute dimer wavefunction
    hf_cache = {}
    hf_wfn_dimer = None
    if do_delta_hf:
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.set_global_option('DF_INTS_IO', 'SAVE')

        hf_data = {}
        hf_wfn_dimer = scf_helper(
            "SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs)
        hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY")

        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'dimer', 'monomerA')
        hf_wfn_A = scf_helper(
            "SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs)
        hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY")

        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerA', 'monomerB')
        hf_wfn_B = scf_helper(
            "SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs)
        hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY")

        # Move it back to monomer A
        if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
            core.IO.change_file_namespace(97, 'monomerB', 'dimer')

        core.print_out("\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("         " + "SAPT(DFT): delta HF Segement".center(58) + "\n")
        core.print_out("\n")
        core.print_out("         " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n")
        core.print_out("         ---------------------------------------------------------\n")
        core.print_out("\n")

        # Build cache and JK
        sapt_jk = hf_wfn_B.jk()

        hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True)

        # Electostatics
        elst = sapt_jk_terms.electrostatics(hf_cache, True)
        hf_data.update(elst)

        # Exchange
        exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True)
        hf_data.update(exch)

        # Induction
        ind = sapt_jk_terms.induction(
            hf_cache,
            sapt_jk,
            True,
            maxiter=core.get_option("SAPT", "MAXITER"),
            conv=core.get_option("SAPT", "D_CONVERGENCE"))
        hf_data.update(ind)

        dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data["HF MONOMER B"]

        core.print_out("\n")
        core.print_out(print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value))

        data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF")

    if hf_wfn_dimer is None:
        dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS"))
    else:
        dimer_wfn = hf_wfn_dimer

    # Set the primary functional
    core.set_global_option("DFT_FUNCTIONAL", core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL"))
    core.set_local_option('SCF', 'REFERENCE', 'RKS')

    # Compute Monomer A wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'dimer', 'monomerA')

    if mon_a_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift)

    # Save the JK object
    core.IO.set_default_namespace('monomerA')
    wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs)
    data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Compute Monomer B wavefunction
    if (core.get_option('SCF', 'SCF_TYPE') == 'DF'):
        core.IO.change_file_namespace(97, 'monomerA', 'monomerB')

    if mon_b_shift:
        core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift)

    core.IO.set_default_namespace('monomerB')
    wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs)
    data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY")

    core.set_global_option("DFT_GRAC_SHIFT", 0.0)

    # Print out the title and some information
    core.print_out("\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("         " + "SAPT(DFT): Intermolecular Interaction Segment".center(58) + "\n")
    core.print_out("\n")
    core.print_out("         " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n")
    core.print_out("         ---------------------------------------------------------\n")
    core.print_out("\n")

    core.print_out("  ==> Algorithm <==\n\n")
    core.print_out("   SAPT DFT Functional     %12s\n" % str(sapt_dft_functional))
    core.print_out("   Monomer A GRAC Shift    %12.6f\n" % mon_a_shift)
    core.print_out("   Monomer B GRAC Shift    %12.6f\n" % mon_b_shift)
    core.print_out("   Delta HF                %12s\n" % ("True" if do_delta_hf else "False"))
    core.print_out("   JK Algorithm            %12s\n" % core.get_option("SCF", "SCF_TYPE"))

    # Build cache and JK
    sapt_jk = wfn_B.jk()

    cache = sapt_jk_terms.build_sapt_jk_cache(wfn_A, wfn_B, sapt_jk, True)

    # Electostatics
    elst = sapt_jk_terms.electrostatics(cache, True)
    data.update(elst)

    # Exchange
    exch = sapt_jk_terms.exchange(cache, sapt_jk, True)
    data.update(exch)

    # Induction
    ind = sapt_jk_terms.induction(
        cache,
        sapt_jk,
        True,
        maxiter=core.get_option("SAPT", "MAXITER"),
        conv=core.get_option("SAPT", "D_CONVERGENCE"))
    data.update(ind)

    # Dispersion
    primary_basis = wfn_A.basisset()
    core.print_out("\n")
    aux_basis = core.BasisSet.build(sapt_dimer, "DF_BASIS_MP2",
                                    core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT",
                                    core.get_global_option('BASIS'))
    fdds_disp = sapt_mp2_terms.df_fdds_dispersion(primary_basis, aux_basis, cache)
    data.update(fdds_disp)

    if core.get_option("SAPT", "SAPT_DFT_MP2_DISP_ALG") == "FISAPT":
        mp2_disp = sapt_mp2_terms.df_mp2_fisapt_dispersion(wfn_A, primary_basis, aux_basis, cache, do_print=True)
    else:
        mp2_disp = sapt_mp2_terms.df_mp2_sapt_dispersion(
            dimer_wfn, wfn_A, wfn_B, primary_basis, aux_basis, cache, do_print=True)
    data.update(mp2_disp)

    # Print out final data
    core.print_out("\n")
    core.print_out(print_sapt_dft_summary(data, "SAPT(DFT)"))

    # Copy data back into globals
    for k, v in data.items():
        core.set_variable(k, v)

    core.tstop()

    return dimer_wfn
Exemplo n.º 15
0
def run_gaussian_2(name, **kwargs):

    # throw an exception for open-shells
    if (core.get_option('SCF','REFERENCE') != 'RHF' ):
        raise ValidationError("""g2 computations require "reference rhf".""")

    # stash user options:
    optstash = p4util.OptionsState(
        ['FNOCC','COMPUTE_TRIPLES'],
        ['FNOCC','COMPUTE_MP4_TRIPLES'],
        ['FREEZE_CORE'],
        ['MP2_TYPE'],
        ['SCF','SCF_TYPE'])

    # override default scf_type
    core.set_local_option('SCF','SCF_TYPE','PK')

    # optimize geometry at scf level
    core.clean()
    core.set_global_option('BASIS',"6-31G(D)")
    driver.optimize('scf')
    core.clean()

    # scf frequencies for zpe
    # NOTE This line should not be needed, but without it there's a seg fault
    scf_e, ref = driver.frequency('scf', return_wfn=True)

    # thermodynamic properties
    du = core.get_variable('INTERNAL ENERGY CORRECTION')
    dh = core.get_variable('ENTHALPY CORRECTION')
    dg = core.get_variable('GIBBS FREE ENERGY CORRECTION')

    freqs   = ref.frequencies()
    nfreq   = freqs.dim(0)
    freqsum = 0.0
    for i in range(0, nfreq):
        freqsum += freqs.get(i)
    zpe = freqsum / p4const.psi_hartree2wavenumbers * 0.8929 * 0.5
    core.clean()

    # optimize geometry at mp2 (no frozen core) level
    # note: freeze_core isn't an option in MP2
    core.set_global_option('FREEZE_CORE',"FALSE")
    core.set_global_option('MP2_TYPE', 'CONV')
    driver.optimize('mp2')
    core.clean()

    # qcisd(t)
    core.set_local_option('FNOCC','COMPUTE_MP4_TRIPLES',"TRUE")
    core.set_global_option('FREEZE_CORE',"TRUE")
    core.set_global_option('BASIS',"6-311G(D_P)")
    ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs)

    # HLC: high-level correction based on number of valence electrons
    nirrep = ref.nirrep()
    frzcpi = ref.frzcpi()
    nfzc = 0
    for i in range (0,nirrep):
        nfzc += frzcpi[i]
    nalpha = ref.nalpha() - nfzc
    nbeta  = ref.nbeta() - nfzc
    # hlc of gaussian-2
    hlc = -0.00481 * nalpha -0.00019 * nbeta
    # hlc of gaussian-1
    hlc1 = -0.00614 * nalpha

    eqci_6311gdp = core.get_variable("QCISD(T) TOTAL ENERGY")
    emp4_6311gd  = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311gd  = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for diffuse functions
    core.set_global_option('BASIS',"6-311+G(D_P)")
    driver.energy('mp4')
    emp4_6311pg_dp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311pg_dp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for polarization functions
    core.set_global_option('BASIS',"6-311G(2DF_P)")
    driver.energy('mp4')
    emp4_6311g2dfp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311g2dfp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # big basis mp2
    core.set_global_option('BASIS',"6-311+G(3DF_2P)")
    #run_fnocc('_mp2',**kwargs)
    driver.energy('mp2')
    emp2_big = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()
    eqci       = eqci_6311gdp
    e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp
    e_plus     = emp4_6311pg_dp - emp4_6311gd
    e_2df      = emp4_6311g2dfp - emp4_6311gd

    eg2 = eqci + e_delta_g2 + e_plus + e_2df
    eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe

    core.print_out('\n')
    core.print_out('  ==>  G1/G2 Energy Components  <==\n')
    core.print_out('\n')
    core.print_out('        QCISD(T):            %20.12lf\n' % eqci)
    core.print_out('        E(Delta):            %20.12lf\n' % e_delta_g2)
    core.print_out('        E(2DF):              %20.12lf\n' % e_2df)
    core.print_out('        E(+):                %20.12lf\n' % e_plus)
    core.print_out('        E(G1 HLC):           %20.12lf\n' % hlc1)
    core.print_out('        E(G2 HLC):           %20.12lf\n' % hlc)
    core.print_out('        E(ZPE):              %20.12lf\n' % zpe)
    core.print_out('\n')
    core.print_out('  ==>  0 Kelvin Results  <==\n')
    core.print_out('\n')
    eg2_0k = eg2 + zpe + hlc
    core.print_out('        G1:                  %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe))
    core.print_out('        G2(MP2):             %20.12lf\n' % eg2_mp2_0k)
    core.print_out('        G2:                  %20.12lf\n' % eg2_0k)

    core.set_variable("G1 TOTAL ENERGY",eqci + e_plus + e_2df + hlc1 + zpe)
    core.set_variable("G2 TOTAL ENERGY",eg2_0k)
    core.set_variable("G2(MP2) TOTAL ENERGY",eg2_mp2_0k)

    core.print_out('\n')
    T = core.get_global_option('T')
    core.print_out('  ==>  %3.0lf Kelvin Results  <==\n'% T)
    core.print_out('\n')

    internal_energy = eg2_mp2_0k + du - zpe / 0.8929
    enthalpy        = eg2_mp2_0k + dh - zpe / 0.8929
    gibbs           = eg2_mp2_0k + dg - zpe / 0.8929

    core.print_out('        G2(MP2) energy:      %20.12lf\n' % internal_energy )
    core.print_out('        G2(MP2) enthalpy:    %20.12lf\n' % enthalpy)
    core.print_out('        G2(MP2) free energy: %20.12lf\n' % gibbs)
    core.print_out('\n')

    core.set_variable("G2(MP2) INTERNAL ENERGY",internal_energy)
    core.set_variable("G2(MP2) ENTHALPY",enthalpy)
    core.set_variable("G2(MP2) FREE ENERGY",gibbs)

    internal_energy = eg2_0k + du - zpe / 0.8929
    enthalpy        = eg2_0k + dh - zpe / 0.8929
    gibbs           = eg2_0k + dg - zpe / 0.8929

    core.print_out('        G2 energy:           %20.12lf\n' % internal_energy )
    core.print_out('        G2 enthalpy:         %20.12lf\n' % enthalpy)
    core.print_out('        G2 free energy:      %20.12lf\n' % gibbs)

    core.set_variable("CURRENT ENERGY",eg2_0k)

    core.set_variable("G2 INTERNAL ENERGY",internal_energy)
    core.set_variable("G2 ENTHALPY",enthalpy)
    core.set_variable("G2 FREE ENERGY",gibbs)

    core.clean()

    optstash.restore()

    # return 0K g2 results
    return eg2_0k
Exemplo n.º 16
0
def nbody_gufunc(func, method_string, **kwargs):
    """
    Computes the nbody interaction energy, gradient, or Hessian depending on input.
    This is a generalized univeral function for computing interaction quantities.

    :returns: *return type of func* |w--w| The interaction data.

    :returns: (*float*, :ref:`Wavefunction<sec:psimod_Wavefunction>`) |w--w| interaction data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    :type func: function
    :param func: ``energy`` || etc.

        Python function that accepts method_string and a molecule. Returns a
        energy, gradient, or Hessian as requested.

    :type method_string: string
    :param method_string: ``'scf'`` || ``'mp2'`` || ``'ci5'`` || etc.

        First argument, lowercase and usually unlabeled. Indicates the computational
        method to be passed to func.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :type return_wfn: :ref:`boolean <op_py_boolean>`
    :param return_wfn: ``'on'`` || |dl| ``'off'`` |dr|

        Indicate to additionally return the :ref:`Wavefunction<sec:psimod_Wavefunction>`
        calculation result as the second element of a tuple.

    :type bsse_type: string or list
    :param bsse_type: ``'cp'`` || ``['nocp', 'vmfc']`` || |dl| ``None`` |dr| || etc.

        Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this
        list is returned by this function. By default, this function is not called.

    :type max_nbody: int
    :param max_nbody: ``3`` || etc.

        Maximum n-body to compute, cannot exceed the number of fragments in the moleucle.

    :type ptype: string
    :param ptype: ``'energy'`` || ``'gradient'`` || ``'hessian'``

        Type of the procedure passed in.

    :type return_total_data: :ref:`boolean <op_py_boolean>`
    :param return_total_data: ``'on'`` || |dl| ``'off'`` |dr|

        If True returns the total data (energy/gradient/etc) of the system,
        otherwise returns interaction data.
    """

    ### ==> Parse some kwargs <==
    kwargs = p4util.kwargs_lower(kwargs)
    return_wfn = kwargs.pop('return_wfn', False)
    ptype = kwargs.pop('ptype', None)
    return_total_data = kwargs.pop('return_total_data', False)
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()
    core.clean_variables()

    if ptype not in ['energy', 'gradient', 'hessian']:
        raise ValidationError(
            """N-Body driver: The ptype '%s' is not regonized.""" % ptype)

    # Figure out BSSE types
    do_cp = False
    do_nocp = False
    do_vmfc = False
    return_method = False

    # Must be passed bsse_type
    bsse_type_list = kwargs.pop('bsse_type')
    if bsse_type_list is None:
        raise ValidationError("N-Body GUFunc: Must pass a bsse_type")
    if not isinstance(bsse_type_list, list):
        bsse_type_list = [bsse_type_list]

    for num, btype in enumerate(bsse_type_list):
        if btype.lower() == 'cp':
            do_cp = True
            if (num == 0): return_method = 'cp'
        elif btype.lower() == 'nocp':
            do_nocp = True
            if (num == 0): return_method = 'nocp'
        elif btype.lower() == 'vmfc':
            do_vmfc = True
            if (num == 0): return_method = 'vmfc'
        else:
            raise ValidationError(
                "N-Body GUFunc: bsse_type '%s' is not recognized" %
                btype.lower())

    max_nbody = kwargs.get('max_nbody', -1)
    max_frag = molecule.nfragments()
    if max_nbody == -1:
        max_nbody = molecule.nfragments()
    else:
        max_nbody = min(max_nbody, max_frag)

    # What levels do we need?
    nbody_range = range(1, max_nbody + 1)
    fragment_range = range(1, max_frag + 1)

    # Flip this off for now, needs more testing
    # If we are doing CP lets save them integrals
    #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
    #    # Set to save RI integrals for repeated full-basis computations
    #    ri_ints_io = core.get_global_option('DF_INTS_IO')

    #    # inquire if above at all applies to dfmp2 or just scf
    #    core.set_global_option('DF_INTS_IO', 'SAVE')
    #    psioh = core.IOManager.shared_object()
    #    psioh.set_specific_retention(97, True)

    bsse_str = bsse_type_list[0]
    if len(bsse_type_list) > 1:
        bsse_str = str(bsse_type_list)
    core.print_out("\n\n")
    core.print_out("   ===> N-Body Interaction Abacus <===\n")
    core.print_out("        BSSE Treatment:                     %s\n" %
                   bsse_str)

    cp_compute_list = {x: set() for x in nbody_range}
    nocp_compute_list = {x: set() for x in nbody_range}
    vmfc_compute_list = {x: set() for x in nbody_range}
    vmfc_level_list = {x: set()
                       for x in nbody_range
                       }  # Need to sum something slightly different

    # Build up compute sets
    if do_cp:
        # Everything is in dimer basis
        basis_tuple = tuple(fragment_range)
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                cp_compute_list[nbody].add((x, basis_tuple))

    if do_nocp:
        # Everything in monomer basis
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                nocp_compute_list[nbody].add((x, x))

    if do_vmfc:
        # Like a CP for all combinations of pairs or greater
        for nbody in nbody_range:
            for cp_combos in it.combinations(fragment_range, nbody):
                basis_tuple = tuple(cp_combos)
                for interior_nbody in nbody_range:
                    for x in it.combinations(cp_combos, interior_nbody):
                        combo_tuple = (x, basis_tuple)
                        vmfc_compute_list[interior_nbody].add(combo_tuple)
                        vmfc_level_list[len(basis_tuple)].add(combo_tuple)

    # Build a comprehensive compute_range
    compute_list = {x: set() for x in nbody_range}
    for n in nbody_range:
        compute_list[n] |= cp_compute_list[n]
        compute_list[n] |= nocp_compute_list[n]
        compute_list[n] |= vmfc_compute_list[n]
        core.print_out("        Number of %d-body computations:     %d\n" %
                       (n, len(compute_list[n])))

    # Build size and slices dictionaries
    fragment_size_dict = {
        frag: molecule.extract_subsets(frag).natom()
        for frag in range(1, max_frag + 1)
    }

    start = 0
    fragment_slice_dict = {}
    for k, v in fragment_size_dict.items():
        fragment_slice_dict[k] = slice(start, start + v)
        start += v

    molecule_total_atoms = sum(fragment_size_dict.values())

    # Now compute the energies
    energies_dict = {}
    ptype_dict = {}
    for n in compute_list.keys():
        core.print_out(
            "\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        print("\n   ==> N-Body: Now computing %d-body complexes <==\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out(
                "\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n"
                % (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            ptype_dict[pair] = func(method_string,
                                    molecule=current_mol,
                                    **kwargs)
            energies_dict[pair] = core.get_variable("CURRENT ENERGY")
            core.print_out(
                "\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n"
                % (str(pair[0]), str(pair[1]), energies_dict[pair]))

            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    # Final dictionaries
    cp_energy_by_level = {n: 0.0 for n in nbody_range}
    nocp_energy_by_level = {n: 0.0 for n in nbody_range}

    cp_energy_body_dict = {n: 0.0 for n in nbody_range}
    nocp_energy_body_dict = {n: 0.0 for n in nbody_range}
    vmfc_energy_body_dict = {n: 0.0 for n in nbody_range}

    # Build out ptype dictionaries if needed
    if ptype != 'energy':
        if ptype == 'gradient':
            arr_shape = (molecule_total_atoms, 3)
        elif ptype == 'hessian':
            arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3)
        else:
            raise KeyError("N-Body: ptype '%s' not recognized" % ptype)

        cp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}

        cp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
    else:
        cp_ptype_by_level, cp_ptype_body_dict = None, None
        nocp_ptype_by_level, nocp_ptype_body_dict = None, None
        vmfc_ptype_body_dict = None

    # Sum up all of the levels
    for n in nbody_range:

        # Energy
        cp_energy_by_level[n] = sum(energies_dict[v]
                                    for v in cp_compute_list[n])
        nocp_energy_by_level[n] = sum(energies_dict[v]
                                      for v in nocp_compute_list[n])

        # Special vmfc case
        if n > 1:
            vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1]
        for tup in vmfc_level_list[n]:
            vmfc_energy_body_dict[n] += (
                (-1)**(n - len(tup[0]))) * energies_dict[tup]

        # Do ptype
        if ptype != 'energy':
            _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n],
                                    fragment_slice_dict, fragment_size_dict,
                                    cp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n],
                                    fragment_slice_dict, fragment_size_dict,
                                    nocp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype,
                                    ptype_dict,
                                    vmfc_level_list[n],
                                    fragment_slice_dict,
                                    fragment_size_dict,
                                    vmfc_ptype_by_level[n],
                                    vmfc=True)

    # Compute cp energy and ptype
    if do_cp:
        for n in nbody_range:
            if n == max_frag:
                cp_energy_body_dict[n] = cp_energy_by_level[n]
                if ptype != 'energy':
                    cp_ptype_body_dict[n][:] = cp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk = nCr(max_frag - k - 1, n - k)
                sign = ((-1)**(n - k))
                value = cp_energy_by_level[k]
                cp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = cp_ptype_by_level[k]
                    cp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)")
        cp_interaction_energy = cp_energy_body_dict[
            max_nbody] - cp_energy_body_dict[1]
        core.set_variable('Counterpoise Corrected Total Energy',
                          cp_energy_body_dict[max_nbody])
        core.set_variable('Counterpoise Corrected Interaction Energy',
                          cp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key,
                              cp_energy_body_dict[n] - cp_energy_body_dict[1])

    # Compute nocp energy and ptype
    if do_nocp:
        for n in nbody_range:
            if n == max_frag:
                nocp_energy_body_dict[n] = nocp_energy_by_level[n]
                if ptype != 'energy':
                    nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk = nCr(max_frag - k - 1, n - k)
                sign = ((-1)**(n - k))
                value = nocp_energy_by_level[k]
                nocp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = nocp_ptype_by_level[k]
                    nocp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(nocp_energy_body_dict,
                            "Non-Counterpoise Corrected (NoCP)")
        nocp_interaction_energy = nocp_energy_body_dict[
            max_nbody] - nocp_energy_body_dict[1]
        core.set_variable('Non-Counterpoise Corrected Total Energy',
                          nocp_energy_body_dict[max_nbody])
        core.set_variable('Non-Counterpoise Corrected Interaction Energy',
                          nocp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(
                var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1])

    # Compute vmfc energy and ptype
    if do_vmfc:
        _print_nbody_energy(vmfc_energy_body_dict,
                            "Valiron-Mayer Function Couterpoise (VMFC)")
        vmfc_interaction_energy = vmfc_energy_body_dict[
            max_nbody] - vmfc_energy_body_dict[1]
        core.set_variable('Valiron-Mayer Function Couterpoise Total Energy',
                          vmfc_energy_body_dict[max_nbody])
        core.set_variable(
            'Valiron-Mayer Function Couterpoise Interaction Energy',
            vmfc_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(
                var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1])

    if return_method == 'cp':
        ptype_body_dict = cp_ptype_body_dict
        energy_body_dict = cp_energy_body_dict
    elif return_method == 'nocp':
        ptype_body_dict = nocp_ptype_body_dict
        energy_body_dict = nocp_energy_body_dict
    elif return_method == 'vmfc':
        ptype_body_dict = vmfc_ptype_body_dict
        energy_body_dict = vmfc_energy_body_dict
    else:
        raise ValidationError(
            "N-Body Wrapper: Invalid return type. Should never be here, please post this error on github."
        )

    # Figure out and build return types
    if return_total_data:
        ret_energy = energy_body_dict[max_nbody]
    else:
        ret_energy = energy_body_dict[max_nbody]
        ret_energy -= energy_body_dict[1]

    if ptype != 'energy':
        if return_total_data:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
        else:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
            np_final_ptype -= ptype_body_dict[1]

            ret_ptype = core.Matrix.from_array(np_final_ptype)
    else:
        ret_ptype = ret_energy

    # Build and set a wavefunction
    wfn = core.Wavefunction.build(molecule, 'sto-3g')
    wfn.cdict["nbody_energy"] = energies_dict
    wfn.cdict["nbody_ptype"] = ptype_dict
    wfn.cdict["nbody_body_energy"] = energy_body_dict
    wfn.cdict["nbody_body_ptype"] = ptype_body_dict

    if ptype == 'gradient':
        wfn.set_gradient(ret_ptype)
    elif ptype == 'hessian':
        wfn.set_hessian(ret_ptype)

    core.set_variable("CURRENT ENERGY", ret_energy)

    if return_wfn:
        return (ret_ptype, wfn)
    else:
        return ret_ptype
Exemplo n.º 17
0
def frac_traverse(name, **kwargs):
    """Scan electron occupancy from +1 electron to -1.

    Parameters
    ----------
    name : string, functional function
        DFT functional string name or function defining functional
        whose omega is to be optimized.
    molecule : :ref:`molecule <op_py_molecule>`, optional
        Target molecule (neutral) for which omega is to be tuned, if not last defined.
    cation_mult : int, optional
        Multiplicity of cation, if not neutral multiplicity + 1.
    anion_mult : int, optional
        Multiplicity of anion, if not neutral multiplicity + 1.
    frac_start : int, optional
        Iteration at which to start frac procedure when not reading previous
        guess. Defaults to 25.
    HOMO_occs : list, optional
        Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`.
    LUMO_occs : list, optional
        Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`.
    H**O : int, optional
        Index of H**O.
    LUMO : int, optional
        Index of LUMO.
    frac_diis : bool, optional
        Do use DIIS for non-1.0-occupied points?
    neutral_guess : bool, optional
        Do use neutral orbitals as guess for the anion?
    hf_guess: bool, optional
        Do use UHF guess before UKS?
    continuous_guess : bool, optional
        Do carry along guess rather than reguessing at each occupation?
    filename : str, optional
        Result filename, if not name of molecule.

    Returns
    -------
    dict
        Dictionary associating SCF energies with occupations.

    """
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'],
        ['SCF', 'DF_INTS_IO'],
        ['SCF', 'REFERENCE'],
        ["SCF", "FRAC_START"],
        ["SCF", "FRAC_RENORMALIZE"],
        #["SCF", "FRAC_LOAD"],
        ["SCF", "FRAC_OCC"],
        ["SCF", "FRAC_VAL"],
        ["SCF", "FRAC_DIIS"])
    kwargs = p4util.kwargs_lower(kwargs)

    # Make sure the molecule the user provided is the active one, and neutral
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()

    if molecule.molecular_charge() != 0:
        raise ValidationError(
            """frac_traverse requires neutral molecule to start.""")
    if molecule.schoenflies_symbol() != 'c1':
        core.print_out(
            """  Requested procedure `frac_traverse` does not make use of molecular symmetry: """
            """further calculations in C1 point group.\n""")
    molecule = molecule.clone()
    molecule.reset_point_group('c1')
    molecule.update_geometry()

    charge0 = molecule.molecular_charge()
    mult0 = molecule.multiplicity()

    chargep = charge0 + 1
    chargem = charge0 - 1

    multp = kwargs.get('cation_mult', mult0 + 1)
    multm = kwargs.get('anion_mult', mult0 + 1)

    # By default, we start the frac procedure on the 25th iteration
    # when not reading a previous guess
    frac_start = kwargs.get('frac_start', 25)

    # By default, we occupy by tenths of electrons
    HOMO_occs = kwargs.get(
        'HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])
    LUMO_occs = kwargs.get(
        'LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])

    # By default, H**O and LUMO are both in alpha
    Z = 0
    for A in range(molecule.natom()):
        Z += molecule.Z(A)
    Z -= charge0
    H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2))
    LUMO = kwargs.get('LUMO', H**O + 1)

    # By default, DIIS in FRAC (1.0 occupation is always DIIS'd)
    frac_diis = kwargs.get('frac_diis', True)

    # By default, use the neutral orbitals as a guess for the anion
    neutral_guess = kwargs.get('neutral_guess', True)

    # By default, burn-in with UHF first, if UKS
    hf_guess = False
    if core.get_local_option('SCF', 'REFERENCE') == 'UKS':
        hf_guess = kwargs.get('hf_guess', True)

    # By default, re-guess at each N
    continuous_guess = kwargs.get('continuous_guess', False)

    # By default, drop the files to the molecule's name
    root = kwargs.get('filename', molecule.name())
    traverse_filename = root + '.traverse.dat'
    # => Traverse <= #
    occs = []
    energies = []
    potentials = []
    convs = []

    # => Run the neutral for its orbitals, if requested <= #

    core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    old_guess = core.get_local_option("SCF", "GUESS")
    if (neutral_guess):
        if (hf_guess):
            core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the anion first <= #

    molecule.set_molecular_charge(chargem)
    molecule.set_multiplicity(multm)

    # => Burn the anion in with hf, if requested <= #
    if hf_guess:
        core.set_local_option("SCF", "REFERENCE", "UHF")
        driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs)
        core.set_local_option("SCF", "REFERENCE", "UKS")
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "DF_INTS_IO", "SAVE")

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)
    # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    for occ in LUMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [LUMO])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf',
                               dft_functional=name,
                               return_wfn=True,
                               molecule=molecule,
                               **kwargs)
        C = 1
        if E == 0.0:
            E = core.get_variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(LUMO) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(LUMO) - 1))

        occs.append(occ)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        #core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Run the neutral next <= #

    molecule.set_molecular_charge(charge0)
    molecule.set_multiplicity(mult0)

    # Burn the neutral in with hf, if requested <= #

    if not continuous_guess:
        core.set_local_option("SCF", "GUESS", old_guess)
        if hf_guess:
            core.set_local_option("SCF", "FRAC_START", 0)
            core.set_local_option("SCF", "REFERENCE", "UHF")
            driver.energy('scf',
                          dft_functional=name,
                          molecule=molecule,
                          **kwargs)
            core.set_local_option("SCF", "REFERENCE", "UKS")
            core.set_local_option("SCF", "GUESS", "READ")
        # NYI core.set_local_option("SCF", "FRAC_LOAD", False)

    core.set_local_option("SCF", "FRAC_START", frac_start)
    core.set_local_option("SCF", "FRAC_RENORMALIZE", True)

    for occ in HOMO_occs:

        core.set_local_option("SCF", "FRAC_OCC", [H**O])
        core.set_local_option("SCF", "FRAC_VAL", [occ])

        E, wfn = driver.energy('scf',
                               dft_functional=name,
                               return_wfn=True,
                               molecule=molecule,
                               **kwargs)
        C = 1
        if E == 0.0:
            E = core.get_variable('SCF ITERATION ENERGY')
            C = 0

        if LUMO > 0:
            eps = wfn.epsilon_a()
            potentials.append(eps.get(int(H**O) - 1))
        else:
            eps = wfn.epsilon_b()
            potentials.append(eps.get(-int(H**O) - 1))

        occs.append(occ - 1.0)
        energies.append(E)
        convs.append(C)

        core.set_local_option("SCF", "FRAC_START", 2)
        # NYI core.set_local_option("SCF", "FRAC_LOAD", True)
        core.set_local_option("SCF", "GUESS", "READ")
        core.set_local_option("SCF", "FRAC_DIIS", frac_diis)
        core.set_local_option("SCF", "DF_INTS_IO", "LOAD")

    # => Print the results out <= #
    E = {}
    core.print_out(
        """\n    ==> Fractional Occupation Traverse Results <==\n\n""")
    core.print_out("""    %-11s %-24s %-24s %11s\n""" %
                   ('N', 'Energy', 'H**O Energy', 'Converged'))
    for k in range(len(occs)):
        core.print_out("""    %11.3E %24.16E %24.16E %11d\n""" %
                       (occs[k], energies[k], potentials[k], convs[k]))
        E[occs[k]] = energies[k]

    core.print_out("""
    You trying to be a hero Watkins?
    Just trying to kill some bugs sir!
            -Starship Troopers""")

    # Drop the files out
    with open(traverse_filename, 'w') as fh:
        fh.write("""    %-11s %-24s %-24s %11s\n""" %
                 ('N', 'Energy', 'H**O Energy', 'Converged'))
        for k in range(len(occs)):
            fh.write("""    %11.3E %24.16E %24.16E %11d\n""" %
                     (occs[k], energies[k], potentials[k], convs[k]))

    optstash.restore()
    return E
Exemplo n.º 18
0
def print_ci_results(ciwfn, rname, scf_e, ci_e, print_opdm_no=False):
    """
    Printing for all CI Wavefunctions
    """

    # Print out energetics
    core.print_out("\n   ==> Energetics <==\n\n")
    core.print_out("    SCF energy =         %20.15f\n" % scf_e)
    if "CI" in rname:
        core.print_out("    Total CI energy =    %20.15f\n" % ci_e)
    elif "MP" in rname:
        core.print_out("    Total MP energy =    %20.15f\n" % ci_e)
    elif "ZAPT" in rname:
        core.print_out("    Total ZAPT energy =  %20.15f\n" % ci_e)
    else:
        core.print_out("    Total MCSCF energy = %20.15f\n" % ci_e)

    # Nothing to be done for ZAPT or MP
    if ("MP" in rname) or ("ZAPT" in rname):
        core.print_out("\n")
        return

    # Initial info
    ci_nroots = core.get_option("DETCI", "NUM_ROOTS")
    irrep_labels = ciwfn.molecule().irrep_labels()

    # Grab the D-vector
    dvec = ciwfn.D_vector()
    dvec.init_io_files(True)

    for root in range(ci_nroots):
        core.print_out("\n   ==> %s root %d information <==\n\n" %
                       (rname, root))

        # Print total energy
        root_e = core.get_variable("CI ROOT %d TOTAL ENERGY" % (root))
        core.print_out("    %s Root %d energy =  %20.15f\n" %
                       (rname, root, root_e))

        # Print natural occupations
        if print_opdm_no:
            core.print_out("\n   Active Space Natural occupation numbers:\n\n")

            occs_list = []
            r_opdm = ciwfn.get_opdm(root, root, "SUM", False)
            for h in range(len(r_opdm.nph)):
                if 0 in r_opdm.nph[h].shape:
                    continue
                nocc, rot = np.linalg.eigh(r_opdm.nph[h])
                for e in nocc:
                    occs_list.append((e, irrep_labels[h]))

            occs_list.sort(key=lambda x: -x[0])

            cnt = 0
            for value, label in occs_list:
                value, label = occs_list[cnt]
                core.print_out("      %4s  % 8.6f" % (label, value))
                cnt += 1
                if (cnt % 3) == 0:
                    core.print_out("\n")

            if (cnt % 3):
                core.print_out("\n")

        # Print CIVector information
        ciwfn.print_vector(dvec, root)

    # True to keep the file
    dvec.close_io_files(True)
Exemplo n.º 19
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'),
                             ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = core.get_variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False

    # Fake info to start with the inital diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = diis_helper.DIIS_helper(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException(
                "Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta)."
            )

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps"
                % (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep"
                % (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp

    # Limited RAS functionality
    if core.get_local_option(
            "DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out(
            "\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n"
        )
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out(
            "        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    else:
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(mcscf_current_step_type == 'TS')
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = core.get_variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = core.get_variable('CURRENT ENERGY')

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj,
                                                      print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out(
                    "      !Warning. Augmented Hessian did not converge. Taking an approx step.\n"
                )
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out(
                '      Warning! Maxstep = %4.2f, scaling to %4.2f\n' %
                (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS"
                                                 in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.Matrix.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"), False,
                                            False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Finally rotate and set orbitals
        orbs_mat = mcscf_obj.Ck(start_orbs, total_step)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.new_civector(1, mcscf_d_file, True, True)
        dvec.set_nvec(1)
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        core.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        core.set_variable("CURRENT ENERGY", current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) <
                                                     abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(
            dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)

    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out energetics
    core.print_out("\n   ==> Energetics <==\n\n")
    core.print_out("    SCF energy =         %20.15f\n" % scf_energy)
    core.print_out("    Total CI energy =    %20.15f\n\n" % current_energy)

    # Print out CI vector information
    if mcscf_target_conv_type != 'SO':
        dvec = ciwfn.new_civector(mcscf_nroots, mcscf_d_file, True, True)
        dvec.init_io_files(True)

    irrep_labels = ciwfn.molecule().irrep_labels()
    for root in range(mcscf_nroots):
        core.print_out("\n   ==> CI root %d information <==\n\n" % (root + 1))

        # Print total energy
        root_e = core.get_variable("CI ROOT %d TOTAL ENERGY" % (root + 1))
        core.print_out("    CI Root %2d energy =  %20.15f\n" %
                       (root + 1, root_e))

        # Print natural occupations
        core.print_out("\n   Natural occupation numbers:\n\n")

        occs_list = []
        r_opdm = ciwfn.get_opdm(root, root, "SUM", False)
        for h in range(len(r_opdm.nph)):
            if 0 in r_opdm.nph[h].shape:
                continue
            nocc, rot = np.linalg.eigh(r_opdm.nph[h])
            for e in nocc:
                occs_list.append((e, irrep_labels[h]))

        occs_list.sort(key=lambda x: -x[0])

        cnt = 0
        for value, label in occs_list:
            value, label = occs_list[cnt]
            core.print_out("      %4s  % 8.6f" % (label, value))
            cnt += 1
            if (cnt % 3) == 0:
                core.print_out("\n")

        # Print CIVector information
        ciwfn.print_vector(dvec, root)

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        # print('Cleaning up DPD data!')
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn