Exemplo n.º 1
0
 def parameters(self, system='Pendulum-v0'):
     self.system = system
     self.env = gym.make(self.system)
     self.env.reset()  # to reset the environment state
     self.x0 = self.env.state
     self.nx = self.x0.shape[0]
     self.action_sample = self.env.action_space.sample()
     self.nu = np.asarray([self.action_sample]).shape[0]
     #     default simulation setup
     self.U = np.zeros([(self.nsim - 1), self.nu])
     self.U[int(self.nsim / 8)] = 0.1
     # randomIndList =[]
     # for i in range(0, 100):
     #     # any random numbers from 0 to 1000
     #     ind = random.randint(0, self.nsim-1)
     #     self.U[ind] = random.uniform(-1, 1)
     self.U = Steps(nx=1,
                    nsim=self.nsim,
                    values=None,
                    randsteps=int(np.ceil(self.nsim / 40)),
                    xmax=0.5,
                    xmin=-0.5)
     # self.U = SplineSignal(nsim=self.nsim, values=None, xmin=-2.0, xmax=2.0)
     # print(self.U.shape)
     if type(self.action_sample) == int:
         self.U = self.U.astype(int)
Exemplo n.º 2
0
    def parameters(self):
        self.N = 10000  # population
        # initial number of infected and recovered individuals
        self.e_0 = 1 / self.N
        self.i_0 = 0.00
        self.r_0 = 0.00
        self.s_0 = 1 - self.e_0 - self.i_0 - self.r_0
        self.x0 = np.asarray([self.s_0, self.e_0, self.i_0, self.r_0])

        self.nx = 4
        self.nu = 1

        self.t_incubation = 5.1
        self.t_infective = 3.3
        self.R0 = 2.4
        self.alpha = 1 / self.t_incubation
        self.gamma = 1 / self.t_infective
        self.beta = self.R0 * self.gamma
        # default simulation setup
        self.U = Steps(nx=self.nu,
                       nsim=self.nsim,
                       values=None,
                       randsteps=int(np.ceil(self.nsim / 100)),
                       xmax=1,
                       xmin=0)
Exemplo n.º 3
0
 def parameters(self, system='Pendulum-v0'):
     self.system = system
     self.env = gym.make(self.system)
     self.env.reset()  # to reset the environment state
     self.x0 = self.env.state
     self.nx = self.x0.shape[0]
     self.action_sample = self.env.action_space.sample()
     self.nu = np.asarray([self.action_sample]).shape[0]
     #     default simulation setup
     self.U = np.zeros([(self.nsim - 1), self.nu])
     self.U[int(self.nsim / 8)] = 0.1
     self.U = Steps(nx=1,
                    nsim=self.nsim,
                    values=None,
                    randsteps=int(np.ceil(self.nsim / 40)),
                    xmax=0.5,
                    xmin=-0.5)
     if type(self.action_sample) == int:
         self.U = self.U.astype(int)
Exemplo n.º 4
0
 def parameters(self):
     self.rho = 1000.0  # water density (kg/m^3)
     self.A = 1.0  # tank area (m^2)
     # Initial Conditions for the States
     self.x0 = 0
     # default imputs
     c = Steps(nx=1,
               nsim=self.nsim,
               values=None,
               randsteps=int(np.ceil(self.nsim / 400)),
               xmax=55,
               xmin=45)
     valve = Steps(nx=1,
                   nsim=self.nsim,
                   values=None,
                   randsteps=int(np.ceil(self.nsim / 400)),
                   xmax=100,
                   xmin=0)
     self.U = np.vstack([c.T, valve.T]).T
     self.nu = 2
     self.nx = 1
Exemplo n.º 5
0
 def parameters(self):
     super().parameters()
     self.ts = 1
     self.c1 = 0.08  # inlet valve coefficient
     self.c2 = 0.04  # tank outlet coefficient
     # Initial Conditions for the States
     self.x0 = np.asarray([0, 0])
     # default simulation setup
     pump = Steps(nx=1,
                  nsim=self.nsim,
                  values=None,
                  randsteps=int(np.ceil(self.nsim / 400)),
                  xmax=0.5,
                  xmin=0)
     valve = Steps(nx=1,
                   nsim=self.nsim,
                   values=None,
                   randsteps=int(np.ceil(self.nsim / 400)),
                   xmax=0.4,
                   xmin=0)
     self.U = np.vstack([pump.T, valve.T]).T
     self.nu = 2
     self.nx = 2
Exemplo n.º 6
0
 def parameters(self):
     # Volumetric Flowrate (m^3/sec)
     self.q = 100
     # Volume of CSTR (m^3)
     self.V = 100
     # Density of A-B Mixture (kg/m^3)
     self.rho = 1000
     # Heat capacity of A-B Mixture (J/kg-K)
     self.Cp = 0.239
     # Heat of reaction for A->B (J/mol)
     self.mdelH = 5e4
     # E - Activation energy in the Arrhenius Equation (J/mol)
     # R - Universal Gas Constant = 8.31451 J/mol-K
     self.EoverR = 8750
     # Pre-exponential factor (1/sec)
     self.k0 = 7.2e10
     # U - Overall Heat Transfer Coefficient (W/m^2-K)
     # A - Area - this value is specific for the U calculation (m^2)
     self.UA = 5e4
     # Steady State Initial Conditions for the States
     self.Ca_ss = 0.87725294608097
     self.T_ss = 324.475443431599
     self.x0 = np.empty(2)
     self.x0[0] = self.Ca_ss
     self.x0[1] = self.T_ss
     # Steady State Initial Condition for the Uncontrolled Inputs
     self.u_ss = 300.0  # cooling jacket Temperature (K)
     self.Tf = 350  # Feed Temperature (K)
     self.Caf = 1  # Feed Concentration (mol/m^3)
     # dimensions
     self.nx = 2
     self.nu = 1
     self.nd = 2
     # default simulation setup
     self.U = self.u_ss + Steps(nx=1,
                                nsim=self.nsim,
                                values=None,
                                randsteps=int(np.ceil(self.nsim / 100)),
                                xmax=6,
                                xmin=-6)
Exemplo n.º 7
0
class GymWrapper(EmulatorBase):
    """
    wrapper for OpenAI gym environments
    https://gym.openai.com/read-only.html
    https://github.com/openai/gym
    # TODO: include visualization option for the trajectories or render of OpenAI gym
    """
    def __init__(self, nsim=1000, ninit=0, system='Pendulum-v0', seed=59):
        super().__init__(nsim=nsim, ninit=ninit)
        self.system = system

    def parameters(self, system='Pendulum-v0'):
        self.system = system
        self.env = gym.make(self.system)
        self.env.reset()  # to reset the environment state
        self.x0 = self.env.state
        self.nx = self.x0.shape[0]
        self.action_sample = self.env.action_space.sample()
        self.nu = np.asarray([self.action_sample]).shape[0]
        #     default simulation setup
        self.U = np.zeros([(self.nsim - 1), self.nu])
        self.U[int(self.nsim / 8)] = 0.1
        self.U = Steps(nx=1,
                       nsim=self.nsim,
                       values=None,
                       randsteps=int(np.ceil(self.nsim / 40)),
                       xmax=0.5,
                       xmin=-0.5)
        if type(self.action_sample) == int:
            self.U = self.U.astype(int)

    def equations(self, x, u):
        if type(self.action_sample) == int:
            u = u.item()
        self.env.state = x
        x, reward, done, info = self.env.step(u)
        return x, reward

    def simulate(self, nsim=None, U=None, x0=None, **kwargs):
        """
        :param nsim: (int) Number of steps for open loop response
        :param U: (ndarray, shape=(self.nu)) control actions
        :param x0: (ndarray, shape=(self.nx)) Initial state. If not give will use internal state.
        :return: The response trajectories,  X
        """
        if nsim is None:
            nsim = self.nsim
        if U is None:
            U = self.U
        if x0 is None:
            x = self.x0
        else:
            assert x0.shape[0] == self.nx, "Mismatch in x0 size"
            x = x0

        X, Reward = [], []
        N = 0
        for u in U:
            x, reward = self.equations(x, u)
            X.append(x)  # updated states trajectories
            Reward.append(reward)  # updated states trajectories
            N += 1
            if N == nsim:
                break
        Xout = np.asarray(X)
        Yout = np.asarray(Reward).reshape(-1, 1)
        Uout = np.asarray(U)
        return {'X': Xout, 'Y': Yout, 'U': Uout}