Exemplo n.º 1
0
    def rearrange(self, savefig=False):
        dfs, pool = self.sumxrl()

        # Change the question: whether it is more plus? so you need to swap 0 and 1 during a minus reference
        pool_labels = pool['allResponses'].index
        pool['revResponses'] = pool['allResponses']
        for label in pool_labels:
            if label.endswith('m'):
                pool['revResponses'][label] = 1 - pool['allResponses'][label]

        # Combine each two conditions
        rearranged = pd.DataFrame(columns=[
            'hue', 'intensity', 'response', 'ntrial', 'combinedInten',
            'combinedResp', 'combinedN', 'sems', 'fit', 'pse', 'thre'
        ])
        # stupid but straightforward way to combine...
        for ii in np.arange(0, len(pool_labels) - 1, 2):
            idx = ii // 2
            rearranged.loc[idx, 'hue'] = 'hue_' + str(idx + 1)
            rearranged.loc[idx, 'intensity'] = np.hstack(
                [pool['allIntensities'][ii], pool['allIntensities'][ii + 1]])
            rearranged.loc[idx, 'response'] = np.hstack(
                [pool['allResponses'][ii], pool['allResponses'][ii + 1]])
            rearranged.loc[idx, 'ntrial'] = pool['ntrial'][0] * 2

            rearranged.loc[idx, 'combinedInten'],  \
            rearranged.loc[idx, 'combinedResp'],  \
            rearranged.loc[idx, 'combinedN'] = data.functionFromStaircase(rearranged.loc[idx, 'intensity'],
                                                                          rearranged.loc[idx, 'response'],
                                                                          bins='unique')
            rearranged.loc[idx, 'sems'] = [
                sum(rearranged.loc[idx, 'combinedN']) / n
                for n in rearranged.loc[idx, 'combinedN']
            ]  # sems is defined as 1/weight in Psychopy

            guess = [5, 1]
            rearranged.loc[idx, 'fit'] = FitCumNormal(
                rearranged.loc[idx, 'combinedInten'],
                rearranged.loc[idx, 'combinedResp'],
                sems=rearranged.loc[idx, 'sems'],
                guess=None,
                expectedMin=0.0,
                lapse=0.01)  # customized cumulative Gaussian
            rearranged.loc[idx,
                           'pse'] = rearranged.loc[idx,
                                                   'fit'].inverse(0.5 - .01)
            rearranged.loc[idx,
                           'thre'] = rearranged.loc[idx,
                                                    'fit'].inverse(0.75 - .01)

        return rearranged
Exemplo n.º 2
0
    def fitpf(self):
        dfs, pool = self.sumxrl()
        allIntensities = pool['allIntensities']
        allResponses = pool['allResponses']
        ntrial = pool['ntrial']

        # curve fitting and plotting for each condition
        res = {}
        # print('label: ' + 'centre, ' + 'std, ' + 'ssq')
        for idx, label in enumerate(allResponses.index):
            res[label] = {}
            res[label]['intensities'] = abs(allIntensities[label])
            res[label]['responses'] = allResponses[label]

            res[label]['combinedInten'], res[label]['combinedResp'], res[label]['combinedN'] = \
                data.functionFromStaircase(res[label]['intensities'],
                                           res[label]['responses'],
                                           bins='unique')  # bin data and fit to PF

            res[label]['sems'] = [
                1.0 / (n / sum(res[label]['combinedN']))
                for n in res[label]['combinedN']
            ]  # sems is defined as 1/weight in Psychopy

            # res[label]['fit'] = data.FitCumNormal(res[label]['combinedInten'],
            #                                       res[label]['combinedResp'],
            #                                       sems=res[label]['sems'], guess=None,
            #                                       expectedMin=0.5)  # cumulative Gaussian
            guess = [5, 0.5]
            # if label == 'hue_1p' or label == 'hue_2p':
            #     print('detected')
            #     guess = [8, 0.5]
            res[label]['fit'] = FitCumNormal(
                res[label]['combinedInten'],
                res[label]['combinedResp'],
                sems=res[label]['sems'],
                guess=guess,
                expectedMin=0.5,
                lapse=0.05)  # customized cumulative Gaussian

            # print(label + ':' + str(res[label]['fit'].params) + ', ' + str(
            #     res[label]['fit'].ssq))  # a list with [centre, sd] for the Gaussian distribution forming the cumulative

            res[label]['thresh'] = res[label]['fit'].inverse(0.75)  # threshold

        return ntrial, res
Exemplo n.º 3
0
    allIntensities.append(thisDat.intensities)
    allResponses.append(thisDat.data)

#plot each staircase
pylab.subplot(121)
colors = 'brgkcmbrgkcm'
lines, names = [], []
for fileN, thisStair in enumerate(allIntensities):
    #lines.extend(pylab.plot(thisStair))
    #names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
#pylab.legend()

#get combined data
combinedInten, combinedResp, combinedN = \
             data.functionFromStaircase(allIntensities, allResponses, 5)
#fit curve - in this case using a Weibull function
fit = data.FitFunction('weibullTAFC',combinedInten, combinedResp, \
guess=[0.2, 0.5])
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(0.8)
print thresh

#plot curve
pylab.subplot(122)
pylab.plot(smoothInt, smoothResp, '-')
pylab.plot([thresh, thresh], [0, 0.8], '--')pylab.plot([0, thresh],\
[0.8,0.8],'--')
pylab.title('threshold = %0.3f' % (thresh))
#plot points
    #Act of importing will cause staircase intensities to log transform because that's how intensities are represented in the staircase
    #staircase internal will be i = log(100-x)
    #-(10**i)-100
    staircase.importData( toStaircase(noiseEachTrial,descendingPsycho), np.array(corrEachTrial) )
    printStaircase(staircase, briefTrialUpdate=False, printInternalVal=True, alsoLog=False)

    #Fit and plot data
    descendingPsycho = False
    fit = None
    intensityForCurveFitting = outOfStaircase(staircase.intensities,staircase,descendingPsycho)
    #print('intensityForCurveFitting=',intensityForCurveFitting)
    if descendingPsycho: 
         intensityForCurveFitting = 100-staircase.intensities #because fitWeibull assumes curve is ascending
    #convert from list of trials to probabilities
    combinedInten, combinedResp, combinedN = \
         data.functionFromStaircase(intensityForCurveFitting, staircase.data, bins='unique')
    print('combinedInten=',combinedInten,'combinedResp=',combinedResp)
    try:
        fit = data.FitWeibull(combinedInten, combinedResp, expectedMin=0, sems = 1.0/len(staircase.intensities))
        print('fit=',fit)
    except:
        print("Fit failed.")
    plotDataAndPsychometricCurve(staircase,fit,descendingPsycho,threshVal=0.75)
    pylab.show() #must call this to actually show plot
    
    testNoise = True
    if testNoise: #Test noise
        myWin = visual.Window()
        proportnNoise = 0.9
        noiseFieldWidthPix = 200
        bgColor = [-.7,-.7,-.7] 
    
    for imageName, array in thisIndDat.extraInfo.iteritems():
        thisImageName = imageName
        indIntensities[thisImageName]=[]
        indResponses[thisImageName]=[]
        
        thisIntensity = thisIndDat.reversalIntensities[-10:]
        thisResponse = thisIndDat.data[-10:]
        indIntensities[thisImageName].extend(thisIntensity)
        indResponses[thisImageName].extend(thisResponse)
        
        #get individual data
        thisNewIntensity = indIntensities[thisImageName]
        thisNewResponse = indResponses[thisImageName]
        
        combinedIndInten, combinedIndResp, CombinedN = data.functionFromStaircase(thisIntensity, thisResponse, 'unique')

    #fit curve
        combinedIndInten = numpy.array(combinedIndInten)+100
        fit = data.FitWeibull(combinedIndInten, combinedIndResp, guess =[105, 10], expectedMin = 0.5)
        smoothIndInt = pylab.arange(min(combinedIndInten), max(combinedIndInten), 0.001)
        smoothIndResp = fit.eval(smoothIndInt)
        Threshold = fit.inverse(0.8)-100
        
        print 'Threshold', Threshold
        
        label = thisImageName + (" - %.2f" %Threshold)
        
        pylab.subplot(122)
        pylab.plot(smoothIndInt-100, smoothIndResp, '--', label = label)
        pylab.legend(loc = 'lower right')
    assert isinstance(thisDat, data.StairHandler)
    allIntensities.append(thisDat.intensities)
    allResponses.append(thisDat.data)

# plot each staircase
pylab.subplot(121)
colors = "brgkcmbrgkcm"
lines, names = [], []
for fileN, thisStair in enumerate(allIntensities):
    # lines.extend(pylab.plot(thisStair))
    # names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
# pylab.legend()

# get combined data
combinedInten, combinedResp, combinedN = data.functionFromStaircase(allIntensities, allResponses, "unique")

combinedInten = np.asarray(combinedInten) + 100
# fit curve
fit = data.FitWeibull(combinedInten, combinedResp, guess=[100.2, 0.5], expectedMin=0.0)
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(0.5) - 100
# thresh = fit.inverse(0.8)-100

# lower = fit.inverse(0.675)
# upper = fit.inverse(0.925)
lower = fit.inverse(0.25) - 100
upper = fit.inverse(0.75) - 100
jnd = upper - lower
Exemplo n.º 7
0
    thisDat = fromFile(thisFileName)
    assert isinstance(thisDat, data.StairHandler)
    allIntensities.append( thisDat.intensities )
    allResponses.append( thisDat.data )

# plot each staircase
pylab.subplot(121)
lines, names = [], []
for fileN, thisStair in enumerate(allIntensities):
    # lines.extend(pylab.plot(thisStair))
    # names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
# pylab.legend()

# get combined data
i, r, n = data.functionFromStaircase(allIntensities, allResponses, 'unique')
combinedInten, combinedResp, combinedN = i, r, n

# fit curve
guess =[num.average(combinedInten), num.average(combinedInten)/5]

fit = data.FitWeibull(combinedInten, combinedResp, guess=guess, expectedMin=0.0)
smoothInt = num.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(0.5)
print(thresh)

# plot curve
pylab.subplot(122)
pylab.plot(smoothInt, smoothResp, '-')
pylab.plot([thresh, thresh], [0, 0.5], '--')
xlimits=pylab.xlim([0,50])
ylimits=pylab.ylim([140,165])

pylab.subplot(212)
for fileN, thisStair in enumerate(allIntensitiesR):
    pylab.plot(thisStair, '-')
pylab.title('%s_right_loc=%0.0f' %(thisOb,thisLocation))
xlimits=pylab.xlim([0,50])
ylimits=pylab.ylim([140,165])

pylab.savefig ('Analysis%s//FIGURES//SampleStaircases.png' %(fileTag), dpi = 600) 
pylab.savefig ('Analysis%s//FIGURES//SampleStaircases.eps' %(fileTag), dpi = 600) 

pylab.figure(2, figsize = (5,5)) 
#left side trials
combinedInten, combinedResp, combinedN = data.functionFromStaircase(allIntensitiesL, allResponsesL, 'unique')#fit curve
guess= [pylab.mean(combinedInten), 4.0]
fit = data.FitWeibull(combinedInten, combinedResp, expectedMin=0.0, guess=guess, display=0)
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(0.5)
lower = fit.inverse(0.25)
upper = fit.inverse(0.75)
jnd =  upper - lower
#plot curve
pylab.plot(smoothInt, smoothResp, '-k')
pylab.plot([thresh, thresh],[0,0.5],'--r'); pylab.plot([0, thresh],[0.5,0.5],'--r')
#plot points
maxN=max(combinedN); minN=min(combinedN)
maxMarker=8.0; minMarker=4.0
for pointN in range(len(combinedInten)):
Exemplo n.º 9
0
        allRTs.append( thisDat.otherData['rt'])

    #plot each staircase
    pylab.subplot(131)
    colors = 'brgkcmbrgkcm'
    lines, names = [],[]
    for fileN, thisStair in enumerate(allCoherenceLevels):
        #lines.extend(pylab.plot(thisStair))
        #names = files[fileN]
        pylab.plot(thisStair, label=files[fileN])
    pylab.xlabel('Trial')
    pylab.ylabel('Coherence')
    #pylab.legend()

    #get combined data
    combinedInten, combinedResp, combinedN =data.functionFromStaircase(allCoherenceLevels, allResponses, 5)
    #fit curve - in this case using a Weibull function
    fit = data.FitWeibull(combinedInten, combinedResp, guess=[0.2, 0.5])
    #smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
    smoothInt = pylab.arange(0.0, max(combinedInten), 0.001)
    smoothResp = fit.eval(smoothInt)
    thresh = fit.inverse(0.8)
    print thresh

    #plot curve
    pylab.subplot(132)
    pylab.plot(smoothInt, smoothResp, '-')
    pylab.plot([thresh, thresh],[0,0.8],'--')
    pylab.plot([0, thresh], [0.8,0.8],'--')
    pylab.title('threshold = %0.3f' % thresh)
    #plot points
    corrEachTrial = np.zeros( len(noiseEachTrial) )
    for i in range( len(noiseEachTrial) ):
        corrEachTrial[i] = np.random.binomial( 1, pCorrEachTrial[i] )
    print('corrEachTrial=',corrEachTrial)
    print('Importing responses ',np.array(corrEachTrial),' and intensities ',noiseEachTrial)
    #Act of importing will cause staircase intensities to log transform because that's how intensities are represented in the staircase
    #staircase internal will be i = log(100-x)
    #-(10**i)-100
    staircase.importData( toStaircase(noiseEachTrial,descendingPsycho), np.array(corrEachTrial) )
    printStaircase(staircase, briefTrialUpdate=False, printInternalVal=True, alsoLog=False)

    #Fit and plot data
    descendingPsycho = False
    fit = None
    intensityForCurveFitting = outOfStaircase(staircase.intensities,staircase,descendingPsycho)
    #print('intensityForCurveFitting=',intensityForCurveFitting)
    if descendingPsycho: 
         intensityForCurveFitting = 100-staircase.intensities #because fitWeibull assumes curve is ascending
    #convert from list of trials to probabilities
    combinedInten, combinedResp, combinedN = \
         data.functionFromStaircase(intensityForCurveFitting, staircase.data, bins='unique')
    print('combinedInten=',combinedInten,'combinedResp=',combinedResp)
    try:
        fit = data.FitWeibull(combinedInten, combinedResp, expectedMin=0, sems = 1.0/len(staircase.intensities))
        print('fit=',fit)
    except:
        print("Fit failed.")
    plotDataAndPsychometricCurve(staircase,fit,descendingPsycho,threshVal=0.75)
    pylab.show() #must call this to actually show plot

Exemplo n.º 11
0
    def fitpf(self):

        from psychopy import data
        import pylab
        import matplotlib.pyplot as plt

        dfs, _ = self.sumxrl()
        allIntensities = dfs.groupby(level=0)['all_intensities'].apply(
            np.hstack)
        allResponses = dfs.groupby(level=0)['all_responses'].apply(np.hstack)

        ntrial = dfs.groupby(level=0)['ntrial'].sum().unique()
        num = int(len(allIntensities) / 2)
        colorcodes = np.repeat(color4plot(num), 2, axis=0)

        # curve fitting and plotting for each condition
        fig, axes = plt.subplots(4, 4, figsize=(16, 10))
        fig.suptitle(self.sub)
        thresh = []
        for idx, label in enumerate(allResponses.index):
            intensities = abs(allIntensities[label])
            responses = allResponses[label]

            # bin data and fit to PF
            combinedInten, combinedResp, combinedN = data.functionFromStaircase(
                intensities, responses,
                bins='unique')  # optimal: bins='unique'
            fit = data.FitCumNormal(combinedInten,
                                    combinedResp,
                                    guess=None,
                                    expectedMin=0.5)  # cumulative Gaussian
            # fit = data.FitLogistic(combinedInten, combinedResp, guess=None)  # logistic
            # fit = data.FitWeibull(combinedInten, combinedResp, guess=[3, 0.5], display=1, expectedMin=0.5)  #< --- somehow errors
            thresh.append(fit.inverse(0.76))  # threshold
            print(label + ': % 0.3f' % fit.ssq)
            # plot
            ax = axes.flatten()[idx]
            fontsize = 8
            ax.plot(combinedInten,
                    combinedResp,
                    'o',
                    fillstyle='none',
                    color='grey',
                    alpha=.5,
                    markersize=5)  # plot combined data points
            # ax.plot(intensities, responses, 'o', color='grey', alpha=.5, markersize=3)  # plot all data points
            # smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.1)  # x for fitted curve
            # smoothResp = fit.eval(smoothInt)  # y for fitted curve
            smoothResp = pylab.arange(0.5, 1, 0.02)
            smoothInt = fit.inverse(smoothResp)
            ax.plot(smoothInt, smoothResp, '-',
                    color=colorcodes[idx])  # plot fitted curve
            ax.plot([thresh[idx], thresh[idx]], [0, 0.76], '--', color='grey')
            ax.plot([0, thresh[idx]], [0.76, 0.76], '--', color='grey')
            ax.set_title(label + ' ' + 'threshold = %0.3f' % thresh[idx],
                         fontsize=fontsize)
            ax.set_ylim([0.5, 1])
            ax.set_xlim([0, 6])
            ax.tick_params(axis='both', which='major', labelsize=fontsize - 2)

        plt.setp(axes[-1, :], xlabel='hue angle')
        plt.setp(axes[:, 0], ylabel='correctness')

        plt.savefig('pilot_data_fig/' + self.sub + '_' +
                    self.xstr(self.sel_par) + '_' + self.xstr(self.sel_ses) +
                    '_' + str(ntrial) + 'trl' + '.pdf')
        plt.show()

        return allResponses, thresh
Exemplo n.º 12
0
def fitnoise(pool):
    allIntensities = 10 - pool['allIntensities']
    allResponses = pool['allResponses']  # reverse the response
    ntrial = pool['ntrial']

    # curve fitting and plotting for each condition
    res = {}
    # print('label: ' + 'centre, ' + 'std, ' + 'ssq')
    fig, axes = plt.subplots(1, len(pool['allIntensities']), figsize=(8, 6))
    fig.suptitle(str(ntrial) + 'trials')
    for idx, label in enumerate(allResponses.index):
        res[label] = {}
        res[label]['intensities'] = allIntensities[label]
        res[label]['responses'] = allResponses[label]

        # plt.scatter(res[label]['intensities'], res[label]['responses'])

        res[label]['combinedInten'], res[label]['combinedResp'], res[label]['combinedN'] = \
            data.functionFromStaircase(res[label]['intensities'],
                                       res[label]['responses'],
                                       bins=5)  # bin data and fit to PF

        # plt.scatter(res[label]['combinedInten'], res[label]['combinedResp'])

        res[label]['sems'] = [
            1.0 / (n / sum(res[label]['combinedN']))
            for n in res[label]['combinedN']
        ]  # sems is defined as 1/weight in Psychopy

        guess = [3, 0.5]
        # if label == 'hue_1p' or label == 'hue_2p':
        #     print('detected')
        #     guess = [8, 0.5]
        res[label]['fit'] = FitCumNormal(
            res[label]['combinedInten'],
            res[label]['combinedResp'],
            sems=res[label]['sems'],
            guess=None,
            expectedMin=0.5,
            lapse=0.01)  # customized cumulative Gaussian

        # print(label + ':' + str(res[label]['fit'].params) + ', ' + str(
        #     res[label]['fit'].ssq))  # a list with [centre, sd] for the Gaussian distribution forming the cumulative

        res[label]['thresh'] = res[label]['fit'].inverse(0.76)  # threshold

        this_res = res[label]

        # print(label + ':' + str(this_res['fit'].params) + ', ' + str(
        #         this_res['fit'].ssq))  # a list with [centre, sd] for the Gaussian distribution forming the cumulative

        if len(pool['allIntensities']) > 1:
            ax = axes.flatten()[idx]
        else:
            ax = axes

        fontsize = 8
        for inten, resp, se in zip(
                this_res['combinedInten'], this_res['combinedResp'],
                this_res['sems']):  # plot combined data points
            ax.plot(inten, resp, '.', alpha=0.5, markersize=300 / se)

        smoothResp = pylab.arange(0.01, 0.99, .02)
        smoothInt = this_res['fit'].inverse(smoothResp)
        # smoothInt = pylab.arange(0, 6.0, 0.05)
        # smoothResp = this_res['fit'].eval(smoothInt)

        ax.plot(smoothInt, smoothResp, '-')  # plot fitted curve
        ax.plot([this_res['thresh'], this_res['thresh']], [0, 0.75],
                '--',
                color='grey')
        ax.plot([0, this_res['thresh']], [0.75, 0.75], '--', color='grey')

        ssq = np.round(this_res['fit'].ssq, decimals=3)  # sum-squared error
        thre_std = np.round(np.sqrt(np.diagonal(this_res['fit'].covar))[0],
                            decimals=3)
        ax.text(3.5, 0.55, 'ssq = ' + str(ssq), fontsize=fontsize)
        ax.text(3.5, 0.53, 'thre_error = ' + str(thre_std), fontsize=fontsize)
        ax.set_title(label + ' ' + 'threshold = %0.3f' % this_res['thresh'],
                     fontsize=fontsize)
        ax.set_ylim([0.5, 1])
        # ax.set_xlim([0, 6])
        ax.tick_params(axis='both', which='major', labelsize=fontsize - 2)
        ax.set_xlabel('level of coherence (10 - std)')
        ax.set_ylabel('correctness')

        print(this_res['fit'].params[0], ' +/- ', thre_std)

    plt.show()
Exemplo n.º 13
0
                allRTs[condition].append(rt)

                if not coherence in coherence_resp[condition]:
                    coherence_resp[condition][coherence] = []
                coherence_resp[condition][coherence].append(float(resp))

                if not coherence in coherence_rt[condition]:
                    coherence_rt[condition][coherence] = []
                coherence_rt[condition][coherence].append(rt)

    perf_ax = pylab.subplot(121)
    rt_ax = pylab.subplot(122)
    for condition in coherence_resp:
        # get combined data
        combinedInten, combinedResp, combinedN = data.functionFromStaircase(
            allCoherenceLevels[condition], allResponses[condition], 10
        )
        # combinedInten=coherence_resp.keys()
        # combinedInten.sort()
        # combinedResp=[np.mean(coherence_resp[x]) for x in combinedInten]
        # combinedRT=[np.mean(coherence_rt[x]) for x in combinedInten]

        # fit curve - in this case using a Weibull function
        fit = data.FitWeibull(combinedInten, combinedResp, guess=[0.2, 0.5])
        # smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
        smoothInt = pylab.arange(0.0, max(combinedInten), 0.001)
        smoothResp = fit.eval(smoothInt)
        thresh = fit.inverse(0.8)
        print thresh

        # plot curve
Exemplo n.º 14
0
    allResponses.append(thisDat.data)
dataFolder = os.path.split(thisFileName)[0]  # just the path, not file name

# plot each staircase in left hand panel
pylab.subplot(121)
colors = 'brgkcmbrgkcm'
lines, names = [], []
for fileN, thisStair in enumerate(allIntensities):
    # lines.extend(pylab.plot(thisStair))  # uncomment for a legend for files
    # names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
# pylab.legend()

# get combined data
i, r, n = data.functionFromStaircase(allIntensities,
                                     allResponses,
                                     bins='unique')
combinedInten, combinedResp, combinedN = i, r, n
combinedN = pylab.array(combinedN)  # convert to array so we can do maths

# fit curve
fit = data.FitWeibull(combinedInten,
                      combinedResp,
                      expectedMin=expectedMin,
                      sems=1.0 / combinedN)
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(threshVal)
print(thresh)

# plot curve
    allResponses.append( thisDat.loops[0].data ) 
dataFolder = os.path.split(thisFileName)[0] #just the path, excluding file name

#plot each staircase in left hand panel
pylab.subplot(121)
colors = 'brgkcmbrgkcm'
lines, names = [],[]
for fileN, thisStair in enumerate(allIntensities):
    #lines.extend(pylab.plot(thisStair))  #uncomment these lines to get a legend for files
    #names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
#pylab.legend()

#get combined data
combinedInten, combinedResp, combinedN = \
             data.functionFromStaircase(allIntensities, allResponses, bins='unique')
combinedN = pylab.array(combinedN) #convert to array so we can do maths with them

#fit curve
fit = data.FitWeibull(combinedInten, combinedResp, expectedMin=expectedMin,
    sems = 1.0/combinedN)
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(threshVal)
print thresh

#plot curve
pylab.subplot(122)
pylab.plot(smoothInt, smoothResp, 'k-')
pylab.plot([thresh, thresh],[0,threshVal],'k--') #vertical dashed line
pylab.plot([0, thresh],[threshVal,threshVal],'k--') #horizontal dashed line
Exemplo n.º 16
0
    allIntensities.append( thisDat.intensities )
    allResponses.append( thisDat.data )
    
#plot each staircase
pylab.subplot(121)
colors = 'brgkcmbrgkcm'
lines, names = [],[]
for fileN, thisStair in enumerate(allIntensities):
    #lines.extend(pylab.plot(thisStair))
    #names = files[fileN]
    pylab.plot(thisStair, label=files[fileN])
#pylab.legend()

#get combined data
combinedInten, combinedResp, combinedN = \
             data.functionFromStaircase(allIntensities, allResponses, 5)
#fit curve
fit = data.FitWeibull(combinedInten, combinedResp, guess=[0.2, 0.5])
smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
smoothResp = fit.eval(smoothInt)
thresh = fit.inverse(0.8)
print thresh

#plot curve
pylab.subplot(122)
pylab.plot(smoothInt, smoothResp, 'k-')
pylab.plot([thresh, thresh],[0,0.8],'k--'); pylab.plot([0, thresh],[0.8,0.8],'k--')
pylab.title('threshold = %0.3f' %(thresh))
#plot points
pylab.plot(combinedInten, combinedResp, 'ko')
pylab.ylim([0,1])
Exemplo n.º 17
0
def fitData(stairs, percent):

    allIntensities, allResponses = [], []
    for s in stairs.staircases:
        allIntensities.append(s.intensities)
        allResponses.append(s.data)

    for s in stairs.staircases:
        print "Mean for condition ", s.condition['label'], "=", average(
            s.reversalIntensities), "std=", std(s.reversalIntensities)

    #plot each condition
    pylab.subplot(221)
    #for stairNumber, thisStair in enumerate(allIntensities):
    pylab.plot(allIntensities[0],
               'o-',
               label=stairs.staircases[0].condition['label'])
    pylab.xlabel('Trials')
    pylab.ylabel('Speed [cm/s]')
    pylab.legend()

    # Get combined data
    combinedInten, combinedResp, combinedN = data.functionFromStaircase(
        allIntensities, allResponses, 10)

    # Fit curve - in this case using a Weibull function
    fit = data.FitFunction('weibullTAFC',
                           combinedInten,
                           combinedResp,
                           guess=None)
    #fit = data.FitCumNormal(combinedInten,combinedResp)
    intensitiesDomainInterp = pylab.arange(min(allIntensities[0]),
                                           max(allIntensities[0]), 0.01)
    smoothResponses = fit.eval(intensitiesDomainInterp)
    thresh = fit.inverse(percent)

    #Plot fitted curve
    pylab.subplot(222)
    pylab.axis(xmin=min(allIntensities[0]), xmax=max(allIntensities[0]))
    pylab.xlabel('Speed [cm/s]')
    pylab.ylabel('Probability')
    pylab.plot(intensitiesDomainInterp, smoothResponses, '-')
    pylab.plot([thresh, thresh], [0, percent], '--')
    pylab.plot([0, thresh], [percent, percent], '--')
    pylab.title('Threshold at ' + str(percent) + '= %0.3f' % (thresh))
    # Plot points
    pylab.plot(combinedInten, combinedResp, 'o')
    pylab.ylim([0, 1])

    # SECOND CONDITION, the plots are in a second row, under
    pylab.subplot(223)
    #for stairNumber, thisStair in enumerate(allIntensities):
    pylab.plot(allIntensities[1],
               'o-',
               label=stairs.staircases[1].condition['label'])
    pylab.xlabel('Trials')
    pylab.ylabel('Speed [cm/s]')
    pylab.legend()

    # Get combined data
    combinedInten, combinedResp, combinedN = data.functionFromStaircase(
        allIntensities[1], allResponses[1], 10)

    #fit curve - in this case using a Weibull function
    #fit = data.FitFunction('weibullTAFC',combinedInten, combinedResp, guess=None)
    fit = data.FitCumNormal(combinedInten, combinedResp)

    intensitiesDomainInterp = pylab.arange(min(allIntensities[1]),
                                           max(allIntensities[1]), 0.01)
    smoothResponses = fit.eval(intensitiesDomainInterp)

    thresh = fit.inverse(percent)
    #print "Threshold at " + str(percent) +"% with Cumulative Normal= ",thresh

    #Plot fitted curve
    pylab.subplot(224)
    pylab.axis(xmin=min(allIntensities[1]), xmax=max(allIntensities[1]))
    pylab.xlabel('Speed [cm/s]')
    pylab.ylabel('Probability')
    pylab.plot(intensitiesDomainInterp, smoothResponses, '-')
    pylab.plot([thresh, thresh], [0, percent], '--')
    pylab.plot([0, thresh], [percent, percent], '--')
    pylab.title('Threshold at ' + str(percent) + '= %0.3f' % (thresh))
    # Plot points
    pylab.plot(combinedInten, combinedResp, 'o')
    pylab.ylim([0, 1])

    pylab.show()