Exemplo n.º 1
0
    return ppl


#####################

# 하이퍼파라미터 설정
hidden_size = 100  # rnn 의 은닉 상태 벡터의 원소 수
batch_size = 20
wordvec_size = 100
time_size = 35  # truncated bptt가 한번에 펼치는 시간 크기
lr = 20.0
max_epoch = 4
max_grad = 0.25

# 학습 데이터 읽기
corpus, word_to_id, id_to_word = ptb.load_data('train')
corpus_test, _, _ = ptb.load_data('test')
vocab_size = len(word_to_id)
xs = corpus[:-1]  # 입력
ts = corpus[1:]  # 출력

# 모델 생성
model = Rnnlm(vocab_size, wordvec_size, hidden_size)
optimizer = SGD(lr)
trainer = RnnlmTrainer(model, optimizer)

# 기울기 클리핑 적용하여 학습
trainer.fit(xs, ts, max_epoch, batch_size, time_size, max_grad, eval_interval=20)
trainer.plot(ylim=(0, 500))

# 테스트 데이터로 평가
Exemplo n.º 2
0
    def backward(self, dout=1):
        dout = self.ns_loss.backward(dout)
        dout *= 1 / len(self.in_layers)
        for layer in self.in_layers:
            layer.backward(dout)
        return None


################
window_size = 5
hidden_size = 100
batch_size = 100
max_epoch = 10

corpus, word_to_id, id_to_word = ptb.load_data('train')
vocab_size = len(word_to_id)
contexts, target = create_contexts_target(corpus, window_size)
if GPU:
    contexts, target = to_gpu(contexts), to_gpu(target)

model = CBOW(vocab_size, hidden_size, window_size, corpus)
optimizer = Adam()
trainer = Trainer(model, optimizer)

trainer.fit(contexts, target, max_epoch, batch_size)
trainer.plot()

word_vecs = model.word_vecs
if GPU:
    word_vecs = to_cpu(word_vecs)
Exemplo n.º 3
0
'''
2.4.4 PTB 데이터셋
'''

import sys

sys.path.append('..')
import ptb
import numpy as np

corpus, word_to_id, id_to_word = ptb.load_data(
    'train')  # train, test, valid 중 하나 선택 가능

print('말뭉치 크기:', len(corpus))
print('corpus[:30]:', corpus[:30])
print()
print('id_to_word[0]:', id_to_word[0])
print('id_to_word[1]:', id_to_word[1])
print('id_to_word[2]:', id_to_word[2])
print()
print("word_to_id['car']:", word_to_id['car'])
print("word_to_id['happy']:", word_to_id['happy'])
print("word_to_id['lexus']:", word_to_id['lexus'])