Exemplo n.º 1
0
def test_AxonMapSpatial_plot():
    model = AxonMapSpatial()
    for use_dva, xlim in zip([True, False], [(-18, 18), (-5000, 5000)]):
        ax = model.plot(use_dva=use_dva)
        npt.assert_equal(isinstance(ax, Subplot), True)
        npt.assert_equal(ax.get_xlim(), xlim)
    # Simulated area might be larger than that:
    model = AxonMapSpatial(xrange=(-20.5, 20.5), yrange=(-16.1, 16.1))
    ax = model.plot(use_dva=True)
    npt.assert_almost_equal(ax.get_xlim(), (-21, 21))
    npt.assert_almost_equal(ax.get_ylim(), (-18, 18))
    ax = model.plot(use_dva=False)
    npt.assert_almost_equal(ax.get_xlim(), (-6000, 6000))
    npt.assert_almost_equal(ax.get_ylim(), (-5000, 5000))

    # Figure size can be changed:
    ax = model.plot(figsize=(8, 7))
    npt.assert_almost_equal(ax.figure.get_size_inches(), (8, 7))

    # Quadrants can be annotated:
    for ann_q, n_q in [(True, 6), (False, 0)]:
        fig, ax = plt.subplots()
        model.plot(annotate=ann_q, ax=ax)
        npt.assert_equal(len(ax.child_axes), int(n_q > 0))
        if len(ax.child_axes) > 0:
            npt.assert_equal(len(ax.child_axes[0].texts), n_q)
        plt.close(fig)
Exemplo n.º 2
0
def test_AxonMapModel_predict_percept(engine):
    model = AxonMapModel(xystep=0.55,
                         axlambda=100,
                         rho=100,
                         thresh_percept=0,
                         engine=engine,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    # Single-electrode stim:
    img_stim = np.zeros(60)
    img_stim[47] = 1
    percept = model.predict_percept(ArgusII(stim=img_stim))
    # Single bright pixel, rest of arc is less bright:
    npt.assert_equal(np.sum(percept.data > 0.8), 1)
    npt.assert_equal(np.sum(percept.data > 0.6), 2)
    npt.assert_equal(np.sum(percept.data > 0.1), 7)
    npt.assert_equal(np.sum(percept.data > 0.0001), 32)
    # Overall only a few bright pixels:
    npt.assert_almost_equal(np.sum(percept.data), 3.31321, decimal=3)
    # Brightest pixel is in lower right:
    npt.assert_almost_equal(percept.data[33, 46, 0], np.max(percept.data))
    # Top half is empty:
    npt.assert_almost_equal(np.sum(percept.data[:27, :, 0]), 0)
    # Same for lower band:
    npt.assert_almost_equal(np.sum(percept.data[39:, :, 0]), 0)

    # Full Argus II with small lambda: 60 bright spots
    model = AxonMapModel(engine='serial',
                         xystep=1,
                         rho=100,
                         axlambda=40,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    # Most spots are pretty bright, but there are 2 dimmer ones (due to their
    # location on the retina):
    npt.assert_equal(np.sum(percept.data > 0.5), 28)
    npt.assert_equal(np.sum(percept.data > 0.275), 56)

    # Model gives same outcome as Spatial:
    spatial = AxonMapSpatial(engine='serial', xystep=1, rho=100, axlambda=40)
    spatial.build()
    spatial_percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    npt.assert_almost_equal(percept.data, spatial_percept.data)
    npt.assert_equal(percept.time, None)
Exemplo n.º 3
0
def test_AxonMapSpatial_plot():
    model = AxonMapSpatial()
    for use_dva, xlim in zip([True, False], [(-18, 18), (-5000, 5000)]):
        ax = model.plot(use_dva=use_dva)
        npt.assert_equal(isinstance(ax, Subplot), True)
        npt.assert_equal(ax.get_xlim(), xlim)

    # Quadrants can be annotated:
    for ann_q, n_q in [(True, 6), (False, 0)]:
        fig, ax = plt.subplots()
        model.plot(annotate=ann_q, ax=ax)
        npt.assert_equal(len(ax.child_axes), int(n_q > 0))
        if len(ax.child_axes) > 0:
            npt.assert_equal(len(ax.child_axes[0].texts), n_q)
        plt.close(fig)
Exemplo n.º 4
0
def test_AxonMapSpatial_plot():
    model = AxonMapSpatial()
    ax = model.plot()
    npt.assert_equal(isinstance(ax, Subplot), True)

    # Electrodes and quadrants can be annotated:
    for ann_q, n_q in [(True, 4), (False, 0)]:
        ax = model.plot(annotate=ann_q)
        npt.assert_equal(len(ax.texts), n_q)
        close(ax.figure)

    # Setting upside_down flips y axis:
    ax = model.plot(upside_down=True, autoscale=True)
    npt.assert_equal(ax.get_xlim(), (-5000, 5000))
    npt.assert_equal(ax.get_ylim(), (4000, -4000))
Exemplo n.º 5
0
def test_plot_implant_on_axon_map():
    ax = plot_implant_on_axon_map(ArgusII())
    npt.assert_equal(isinstance(ax, Subplot), True)

    # Check axis limits:
    for xlim, ylim in zip([None, (-2000, 1500)], [(-3000, 1300), None]):
        ax = plot_implant_on_axon_map(ArgusII(), xlim=xlim, ylim=ylim)
        if xlim is None:
            xlim = (-4000, 4500)
        if ylim is None:
            ylim = (-2500, 3000)
        npt.assert_almost_equal(ax.get_xlim(), xlim)
        npt.assert_almost_equal(ax.get_ylim(), ylim)

    # Check optic disc center in both eyes:
    model = AxonMapSpatial()
    for eye in ['RE', 'LE']:
        for loc_od in [(15.5, 1.5), (17.9, -0.01)]:
            od = (-loc_od[0], loc_od[1]) if eye == 'LE' else loc_od
            ax = plot_implant_on_axon_map(ArgusII(eye=eye), loc_od=od)
            npt.assert_equal(len(ax.patches), 1)
            npt.assert_almost_equal(ax.patches[0].center, model.dva2ret(od))
            close(ax.figure)

    # Electrodes and quadrants can be annotated:
    for ann_el, n_el in [(True, 60), (False, 0)]:
        for ann_q, n_q in [(True, 4), (False, 0)]:
            ax = plot_implant_on_axon_map(ArgusII(),
                                          annotate_implant=ann_el,
                                          annotate_quadrants=ann_q)
            npt.assert_equal(len(ax.texts), n_el + n_q)
            npt.assert_equal(len(ax.collections[0]._paths), 60)
            close(ax.figure)

    # Stimulating electrodes are marked:
    ax = plot_implant_on_axon_map(ArgusII(stim=np.ones(60)))

    # Setting upside_down flips y axis:
    ax = plot_implant_on_axon_map(ArgusII(), upside_down=True)
    npt.assert_almost_equal(ax.get_xlim(), (-4000, 4500))
    npt.assert_almost_equal(ax.get_ylim(), (3000, -2500))

    with pytest.raises(TypeError):
        plot_implant_on_axon_map(DiskElectrode(0, 0, 0, 100))
    with pytest.raises(ValueError):
        plot_implant_on_axon_map(ArgusII(), n_bundles=0)
Exemplo n.º 6
0
def test_plot_axon_map():
    ax = plot_axon_map()
    npt.assert_equal(isinstance(ax, Subplot), True)

    # Check axis limits:
    for xlim, ylim in zip([None, (-2000, 1500)], [(-3000, 1300), None]):
        ax = plot_axon_map(xlim=xlim, ylim=ylim)
        if xlim is None:
            xlim = (-5000, 5000)
        if ylim is None:
            ylim = (-4000, 4000)
        npt.assert_almost_equal(ax.get_xlim(), xlim)
        npt.assert_almost_equal(ax.get_ylim(), ylim)

    # Check optic disc center in both eyes:
    model = AxonMapSpatial()
    for eye in ['RE', 'LE']:
        for loc_od in [(15.5, 1.5), (-17.9, -0.01)]:
            ax = plot_axon_map(eye=eye, loc_od=loc_od)
            npt.assert_equal(len(ax.patches), 1)
            # Wrong sign for x-coord is automatically corrected:
            if eye == 'RE':
                od = (np.abs(loc_od[0]), loc_od[1])
            else:
                od = (-np.abs(loc_od[0]), loc_od[1])
            npt.assert_almost_equal(ax.patches[0].center, model.dva2ret(od))
            close(ax.figure)

    # Electrodes and quadrants can be annotated:
    for ann_q, n_q in [(True, 4), (False, 0)]:
        ax = plot_axon_map(annotate_quadrants=ann_q)
        npt.assert_equal(len(ax.texts), n_q)

    # Setting upside_down flips y axis:
    ax = plot_axon_map(upside_down=True)
    npt.assert_equal(ax.get_xlim(), (-5000, 5000))
    npt.assert_equal(ax.get_ylim(), (4000, -4000))

    with pytest.raises(ValueError):
        plot_axon_map(loc_od=[3])
    with pytest.raises(ValueError):
        plot_axon_map(eye='foo')
    with pytest.raises(ValueError):
        plot_axon_map(n_bundles=0)
Exemplo n.º 7
0
def test_deepcopy_AxonMapSpatial():
    original = AxonMapSpatial()
    copied = copy.deepcopy(original)

    # Assert these are two different objects
    npt.assert_equal(id(original) != id(copied), True)

    # Assert these objects are equivalent
    npt.assert_equal(original.__dict__ == copied.__dict__, True)
    npt.assert_equal(original == copied, True)

    # Assert building one object does not affect the copied
    original.build()
    npt.assert_equal(copied.is_built, False)
    npt.assert_equal(original.__dict__ != copied.__dict__, True)

    # Assert destroying the original doesn't affect the copied
    original = None
    npt.assert_equal(copied is not None, True)
Exemplo n.º 8
0
def test_AxonMapSpatial(engine):
    # AxonMapSpatial automatically sets `rho`, `axlambda`:
    model = AxonMapSpatial(engine=engine, xystep=5)

    # User can set `rho`:
    model.rho = 123
    npt.assert_equal(model.rho, 123)
    model.build(rho=987)
    npt.assert_equal(model.rho, 987)

    # Converting ret <=> dva
    npt.assert_almost_equal(model.ret2dva(0), 0)
    npt.assert_almost_equal(model.dva2ret(0), 0)

    # Nothing in, None out:
    npt.assert_equal(model.predict_percept(ArgusI()), None)

    # Zero in = zero out:
    implant = ArgusI(stim=np.zeros(16))
    percept = model.predict_percept(implant)
    npt.assert_equal(isinstance(percept, Percept), True)
    npt.assert_equal(percept.shape, list(model.grid.x.shape) + [1])
    npt.assert_almost_equal(percept.data, 0)

    # Multiple frames are processed independently:
    model = AxonMapSpatial(engine=engine, rho=200, axlambda=100, xystep=5)
    model.build()
    percept = model.predict_percept(ArgusI(stim={'A1': [1, 0], 'B3': [0, 2]}))
    npt.assert_equal(percept.shape, list(model.grid.x.shape) + [2])
    pmax = percept.data.max(axis=(0, 1))
    npt.assert_almost_equal(percept.data[2, 3, 0], pmax[0])
    npt.assert_almost_equal(percept.data[2, 3, 1], 0)
    npt.assert_almost_equal(percept.data[3, 4, 0], 0)
    npt.assert_almost_equal(percept.data[3, 4, 1], pmax[1])
def test_biphasicAxonMapSpatial(engine):
    # Lambda cannot be too small:
    with pytest.raises(ValueError):
        BiphasicAxonMapSpatial(axlambda=9).build()

    model = BiphasicAxonMapModel(engine=engine, xystep=2).build()
    # Jax not implemented yet
    if engine == 'jax':
        with pytest.raises(NotImplementedError):
            implant = ArgusII()
            implant.stim = Stimulus({'A5': BiphasicPulseTrain(20, 1, 0.45)})
            percept = model.predict_percept(implant)
        return

    # Only accepts biphasic pulse trains with no delay dur
    implant = ArgusI(stim=np.ones(16))
    with pytest.raises(TypeError):
        model.predict_percept(implant)

    # Nothing in, None out:
    npt.assert_equal(model.predict_percept(ArgusI()), None)

    # Zero in = zero out:
    implant = ArgusI(stim=np.zeros(16))
    percept = model.predict_percept(implant)
    npt.assert_equal(isinstance(percept, Percept), True)
    npt.assert_equal(percept.shape, list(model.grid.x.shape) + [1])
    npt.assert_almost_equal(percept.data, 0)
    npt.assert_equal(percept.time, None)

    # Should be equal to axon map model if effects models return 1
    model = BiphasicAxonMapSpatial(engine=engine, xystep=2)

    def bright_model(freq, amp, pdur):
        return 1

    def size_model(freq, amp, pdur):
        return 1

    def streak_model(freq, amp, pdur):
        return 1

    model.bright_model = bright_model
    model.size_model = size_model
    model.streak_model = streak_model
    model.build()
    axon_map = AxonMapSpatial(xystep=2).build()
    implant = ArgusII()
    implant.stim = Stimulus({'A5': BiphasicPulseTrain(20, 1, 0.45)})
    percept = model.predict_percept(implant)
    percept_axon = axon_map.predict_percept(implant)
    npt.assert_almost_equal(percept.data[:, :, 0],
                            percept_axon.get_brightest_frame())

    # Effect models must be callable
    model = BiphasicAxonMapSpatial(engine=engine, xystep=2)
    model.bright_model = 1.0
    with pytest.raises(TypeError):
        model.build()

    # If t_percept is not specified, there should only be one frame
    model = BiphasicAxonMapSpatial(engine=engine, xystep=2)
    model.build()
    implant = ArgusII()
    implant.stim = Stimulus({'A5': BiphasicPulseTrain(20, 1, 0.45)})
    percept = model.predict_percept(implant)
    npt.assert_equal(percept.time is None, True)
    # If t_percept is specified, only first frame should have data
    # and the rest should be empty
    percept = model.predict_percept(implant, t_percept=[0, 1, 2, 5, 10])
    npt.assert_equal(len(percept.time), 5)
    npt.assert_equal(np.any(percept.data[:, :, 0]), True)
    npt.assert_equal(np.any(percept.data[:, :, 1:]), False)

    # Test that default models give expected values
    model = BiphasicAxonMapSpatial(engine=engine,
                                   rho=400,
                                   axlambda=600,
                                   xystep=1,
                                   xrange=(-20, 20),
                                   yrange=(-15, 15))
    model.build()
    implant = ArgusII()
    implant.stim = Stimulus({'A4': BiphasicPulseTrain(20, 1, 1)})
    percept = model.predict_percept(implant)
    npt.assert_equal(np.sum(percept.data > 0.0813), 81)
    npt.assert_equal(np.sum(percept.data > 0.1626), 59)
    npt.assert_equal(np.sum(percept.data > 0.2439), 44)
    npt.assert_equal(np.sum(percept.data > 0.4065), 26)
    npt.assert_equal(np.sum(percept.data > 0.5691), 14)
Exemplo n.º 10
0
def test_AxonMapModel_predict_percept(engine):
    model = AxonMapModel(xystep=0.55,
                         axlambda=100,
                         rho=100,
                         thresh_percept=0,
                         engine=engine,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    # Single-electrode stim:
    img_stim = np.zeros(60)
    img_stim[47] = 1
    # Axon map jax predict_percept not implemented yet
    if engine == 'jax':
        with pytest.raises(NotImplementedError):
            percept = model.predict_percept(ArgusII(stim=img_stim))
        return
    percept = model.predict_percept(ArgusII(stim=img_stim))
    # Single bright pixel, rest of arc is less bright:
    npt.assert_equal(np.sum(percept.data > 0.8), 1)
    npt.assert_equal(np.sum(percept.data > 0.6), 2)
    npt.assert_equal(np.sum(percept.data > 0.1), 7)
    npt.assert_equal(np.sum(percept.data > 0.0001), 31)
    # Overall only a few bright pixels:
    npt.assert_almost_equal(np.sum(percept.data), 3.3087, decimal=3)
    # Brightest pixel is in lower right:
    npt.assert_almost_equal(percept.data[33, 46, 0], np.max(percept.data))
    # Top half is empty:
    npt.assert_almost_equal(np.sum(percept.data[:27, :, 0]), 0)
    # Same for lower band:
    npt.assert_almost_equal(np.sum(percept.data[39:, :, 0]), 0)

    # Full Argus II with small lambda: 60 bright spots
    model = AxonMapModel(engine='serial',
                         xystep=1,
                         rho=100,
                         axlambda=40,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    # Most spots are pretty bright, but there are 2 dimmer ones (due to their
    # location on the retina):
    npt.assert_equal(np.sum(percept.data > 0.5), 28)
    npt.assert_equal(np.sum(percept.data > 0.275), 56)

    # Model gives same outcome as Spatial:
    spatial = AxonMapSpatial(engine='serial',
                             xystep=1,
                             rho=100,
                             axlambda=40,
                             xrange=(-20, 20),
                             yrange=(-15, 15),
                             n_axons=500)
    spatial.build()
    spatial_percept = spatial.predict_percept(ArgusII(stim=np.ones(60)))
    npt.assert_almost_equal(percept.data, spatial_percept.data)
    npt.assert_equal(percept.time, None)

    # Warning for nonzero electrode-retina distances
    implant = ArgusI(stim=np.ones(16), z=10)
    msg = ("Nonzero electrode-retina distances do not have any effect on the "
           "model output.")
    assert_warns_msg(UserWarning, model.predict_percept, msg, implant)
Exemplo n.º 11
0
def test_AxonMapSpatial(engine):
    # AxonMapSpatial automatically sets `rho`, `axlambda`:
    model = AxonMapSpatial(engine=engine, xystep=5)

    # User can set `rho`:
    model.rho = 123
    npt.assert_equal(model.rho, 123)
    model.build(rho=987)
    npt.assert_equal(model.rho, 987)

    # Converting ret <=> dva
    npt.assert_equal(isinstance(model.retinotopy, Watson2014Map), True)
    npt.assert_almost_equal(model.retinotopy.ret2dva(0, 0), (0, 0))
    npt.assert_almost_equal(model.retinotopy.dva2ret(0, 0), (0, 0))
    model2 = AxonMapSpatial(retinotopy=Watson2014DisplaceMap())
    npt.assert_equal(isinstance(model2.retinotopy, Watson2014DisplaceMap),
                     True)

    # Nothing in, None out:
    npt.assert_equal(model.predict_percept(ArgusI()), None)

    # Zero in = zero out:
    implant = ArgusI(stim=np.zeros(16))
    percept = model.predict_percept(implant)
    npt.assert_equal(isinstance(percept, Percept), True)
    npt.assert_equal(percept.shape, list(model.grid.x.shape) + [1])
    npt.assert_almost_equal(percept.data, 0)
    npt.assert_equal(percept.time, None)

    # Lambda cannot be too small:
    with pytest.raises(ValueError):
        AxonMapSpatial(axlambda=9).build()

    # Multiple frames are processed independently:
    model = AxonMapSpatial(engine=engine,
                           rho=200,
                           axlambda=100,
                           xystep=5,
                           xrange=(-20, 20),
                           yrange=(-15, 15))
    model.build()
    # Axon map jax predict_percept not implemented yet
    if engine == 'jax':
        with pytest.raises(NotImplementedError):
            percept = model.predict_percept(
                ArgusII(stim={
                    'A1': [1, 0],
                    'B3': [0, 2]
                }))
        return
    percept = model.predict_percept(ArgusI(stim={'A1': [1, 0], 'B3': [0, 2]}))
    npt.assert_equal(percept.shape, list(model.grid.x.shape) + [2])
    pmax = percept.data.max(axis=(0, 1))
    npt.assert_almost_equal(percept.data[2, 3, 0], pmax[0])
    npt.assert_almost_equal(percept.data[2, 3, 1], 0)
    npt.assert_almost_equal(percept.data[3, 4, 0], 0)
    npt.assert_almost_equal(percept.data[3, 4, 1], pmax[1])
    npt.assert_almost_equal(percept.time, [0, 1])