Exemplo n.º 1
0
def test_Model_predict_percept_correctly_parallelizes():
    # setup and time spatial model with 1 thread
    one_thread_spatial = Model(spatial=ValidSpatialModel(n_threads=1)).build()
    start_time_one_thread_spatial = time.perf_counter()
    one_thread_spatial.predict_percept(ArgusI())
    one_thread_spatial_predict_time = time.perf_counter(
    ) - start_time_one_thread_spatial

    # setup and time spatial model with 2 threads
    two_thread_spatial = Model(spatial=ValidSpatialModel(n_threads=2)).build()
    start_time_two_thread_spatial = time.perf_counter()
    two_thread_spatial.predict_percept(ArgusI())
    two_threaded_spatial_predict_time = time.perf_counter(
    ) - start_time_two_thread_spatial

    # we expect roughly a linear decrease in time as thread count increases
    npt.assert_almost_equal(actual=two_threaded_spatial_predict_time,
                            desired=one_thread_spatial_predict_time / 2,
                            decimal=1e-5)

    # setup and time temporal model with 1 thread
    one_thread_temporal = Model(temporal=ValidTemporalModel(
        n_threads=1)).build()
    start_time_one_thread_temporal = time.perf_counter()
    one_thread_temporal.predict_percept(ArgusI())
    one_thread_temporal_predict_time = time.perf_counter(
    ) - start_time_one_thread_temporal

    # setup and time temporal model with 2 threads
    two_thread_temporal = Model(temporal=ValidTemporalModel(
        n_threads=2)).build()
    start_time_two_thread_temporal = time.perf_counter()
    two_thread_temporal.predict_percept(ArgusI())
    two_thread_temporal_predict_time = time.perf_counter(
    ) - start_time_two_thread_temporal

    # we expect roughly a linear decrease in time as thread count increases
    npt.assert_almost_equal(actual=two_thread_temporal_predict_time,
                            desired=one_thread_temporal_predict_time / 2,
                            decimal=1e-5)
Exemplo n.º 2
0
def test_Model_predict_percept():
    # A None Model has nothing to build, nothing to perceive:
    model = Model()
    npt.assert_equal(model.predict_percept(ArgusI()), None)
    npt.assert_equal(model.predict_percept(ArgusI(stim={'A1': 1})), None)
    npt.assert_equal(
        model.predict_percept(ArgusI(stim={'A1': 1}), t_percept=[0, 1]), None)

    # Just the spatial model:
    model = Model(spatial=ValidSpatialModel()).build()
    npt.assert_equal(model.predict_percept(ArgusI()), None)
    # Just the temporal model:
    model = Model(temporal=ValidTemporalModel()).build()
    npt.assert_equal(model.predict_percept(ArgusI()), None)

    # Invalid calls:
    model = Model(spatial=ValidSpatialModel(), temporal=ValidTemporalModel())
    with pytest.raises(NotBuiltError):
        # Must call build first:
        model.predict_percept(ArgusI())
    model.build()
    with pytest.raises(ValueError):
        # Cannot request t_percepts that are not multiples of dt:
        model.predict_percept(ArgusI(stim=np.ones(16)), t_percept=[0.1, 0.11])
    with pytest.raises(ValueError):
        # stim.time==None but requesting t_percept != None
        model.predict_percept(ArgusI(stim=np.ones(16)), t_percept=[0, 1, 2])
    with pytest.raises(TypeError):
        # Must pass an implant:
        model.predict_percept(Stimulus(3))