Exemplo n.º 1
0
class POSITION:

    def __init__(self, platform, instrument_id, time_frame):
        self.__platform = platform
        self.__instrument_id = instrument_id
        self.__time_frame = time_frame
        self.__market = MARKET(self.__platform, self.__instrument_id, self.__time_frame)

    def direction(self):
        """获取当前持仓方向"""
        result = self.__platform.get_position()['direction']
        return result

    def amount(self):
        """获取当前持仓数量"""
        result = self.__platform.get_position()['amount']
        return result

    def price(self):
        """获取当前的持仓价格"""
        result = self.__platform.get_position()['price']
        return result

    def coverlong_profit(self):
        """计算平多的单笔交易利润"""
        self.__value = self.__market.contract_value() # 合约面值
        result = (self.__market.last() - self.price()) * (self.amount() * self.__value)
        return result

    def covershort_profit(self):
        """计算平空的单笔交易利润"""
        self.__value = self.__market.contract_value() # 合约面值
        result = (self.price() - self.__market.last()) * (self.amount() * self.__value)
        return result
Exemplo n.º 2
0
class POSITION:

    def __init__(self, platform, instrument_id, time_frame):
        self.__platform = platform
        self.__instrument_id = instrument_id
        self.__time_frame = time_frame
        self.__market = MARKET(self.__platform, self.__instrument_id, self.__time_frame)

    def direction(self):
        """获取当前持仓方向"""
        if config.backtest is False:    # 实盘模式下实时获取账户实际持仓方向,仅支持单向持仓模式下的查询
            result = self.__platform.get_position()['direction']
            return result
        else:   # 回测模式下从数据库中读取持仓方向
            result = storage.read_mysql_datas(0, "回测", self.__instrument_id.split("-")[0].lower() + "_" + self.__time_frame, "总资金", ">")[-1][6]
            return result

    def amount(self, mode=None, side=None):
        """获取当前持仓数量"""
        if config.backtest is False:    # 实盘模式下实时获取账户实际持仓数量
            if mode == "both":  # 如果传入参数"both",查询双向持仓模式的持仓数量
                result = self.__platform.get_position(mode=mode)
                if side == "long":
                    long_amount = result["long"]["amount"]
                    return long_amount
                elif side == "short":
                    short_amount = result["short"]["amount"]
                    return short_amount
            else:
                result = self.__platform.get_position()['amount']
                return result
        else:   # 回测模式下从数据库中读取持仓数量
            result = storage.read_mysql_datas(0, "回测", self.__instrument_id.split("-")[0].lower() + "_" + self.__time_frame, "总资金", ">")[-1][7]
            return result

    def price(self, mode=None, side=None):
        """获取当前的持仓价格"""
        if config.backtest is False:    # 实盘模式下实时获取账户实际持仓价格
            if mode == "both":  # 如果传入参数"both",查询双向持仓模式的持仓价格
                result = self.__platform.get_position(mode=mode)
                if side == "long":
                    long_price = result["long"]["price"]
                    return long_price
                elif side == "short":
                    short_price = result["short"]["price"]
                    return short_price
            else:
                result = self.__platform.get_position()['price']
                return result
        else:   # 回测模式下从数据库中读取持仓价格
            result = storage.read_mysql_datas(0, "回测", self.__instrument_id.split("-")[0].lower() + "_" + self.__time_frame, "总资金", ">")[-1][5]
            return result


    def coverlong_profit(self, market_type=None, last=None):
        """
        计算平多的单笔交易利润
        :param market_type: 默认是USDT合约,可填"usd_contract"(币本位合约)或者"spot"(现货)
        :param last: 回测模式可以传入最新成交价
        :return: 返回计算出的利润结果
        """
        if market_type == "usd_contract":    # 如果是币本位合约
            self.__value = self.__market.contract_value()  # 合约面值
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (last - self.price()) * ((self.amount() * self.__value) / self.price())    # 利润=价差*(合约张数*面值)/持仓价格
            else:   # 如果是实盘模式
                result = (self.__market.last() - self.price()) * ((self.amount() * self.__value) / self.price())  # 利润=价差*(合约张数*面值)/持仓价格

        elif market_type == "spot":    # 如果是现货
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (last - self.price()) * self.amount()    # 利润=价差*持仓数量
            else:   # 如果是实盘模式
                result = (self.__market.last() - self.price()) * self.amount()

        else:   # 默认是usdt合约
            self.__value = self.__market.contract_value()  # 合约面值
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (last - self.price()) * (self.amount() * self.__value) # 利润=价差*(持仓数量*面值)
            else:   # 如果是实盘模式
                result = (self.__market.last() - self.price()) * (self.amount() * self.__value)
        return result

    def covershort_profit(self, market_type=None, last=None):
        """
        计算平空的单笔交易利润
        :param market_type: 默认是USDT合约,可填"usd_contract"(币本位合约)或者"spot"(现货)
        :param last: 回测模式可以传入最新成交价
        :return: 返回计算出的利润结果
        """
        if market_type == "usd_contract":  # 如果是币本位合约
            self.__value = self.__market.contract_value()  # 合约面值
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (self.price() - last) * ((self.amount() * self.__value) / self.price())  # 利润=价差*(合约张数*面值)/持仓价格
            else:  # 如果是实盘模式
                result = (self.price() - self.__market.last()) * (
                            (self.amount() * self.__value) / self.price())  # 利润=价差*(合约张数*面值)/持仓价格

        elif market_type == "spot":  # 如果是现货
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (self.price() - last) * self.amount()  # 利润=价差*持仓数量
            else: # 如果是实盘模式
                result = (self.price() - self.__market.last()) * self.amount()

        else:  # 默认是usdt合约
            self.__value = self.__market.contract_value()  # 合约面值
            if config.backtest and last is not None:    # 如果是回测模式且传入了last最新成交价
                result = (self.price() - last) * (self.amount() * self.__value)  # 利润=价差*(持仓数量*面值)
            else: # 如果是实盘模式
                result = (self.price() - self.__market.last()) * (self.amount() * self.__value)
        return result
Exemplo n.º 3
0
class SIGNALIZE:
    """实盘时根据从交易所获取的k线数据绘制k线图、成交量图及指标"""
    def __init__(self, platform, symbol, time_frame):

        self.__platform = platform
        self.__symbol = symbol
        self.__time_frame = time_frame
        self.__market = MARKET(self.__platform, self.__symbol,
                               self.__time_frame)

        # pull some data
        self.__indicators = INDICATORS(self.__platform, self.__symbol,
                                       self.__time_frame)
        self.__kline = platform.get_kline(self.__time_frame)
        self.__kline.reverse()

        # format it in pandas
        try:  # dataframe有7列的情况
            self.__df = pd.DataFrame(self.__kline,
                                     columns=[
                                         'time', 'open', 'high', 'low',
                                         'close', 'volume', 'currency_volume'
                                     ])
            self.__df = self.__df.astype({
                'time': 'datetime64[ns]',
                'open': 'float64',
                'close': 'float64',
                'high': 'float64',
                'low': 'float64',
                'volume': 'float64',
                'currency_volume': 'float64'
            })
        except:  # dataframe只有6列的情况,如okex的现货k线数据
            self.__df = pd.DataFrame(
                self.__kline,
                columns=['time', 'open', 'high', 'low', 'close', 'volume'])
            self.__df = self.__df.astype({
                'time': 'datetime64[ns]',
                'open': 'float64',
                'close': 'float64',
                'high': 'float64',
                'low': 'float64',
                'volume': 'float64'
            })

        # create three plot 创建三层图纸,第一层画k线,第二层画成交量,第三层画一些适宜于副图显示的指标
        fplt.foreground = '#FFFFFF'  # 前景色
        fplt.background = '#333333'  # 背景色
        fplt.odd_plot_background = '#333333'  # 第二层图纸的背景色
        fplt.cross_hair_color = "#FFFFFF"  # 准星的颜色
        self.__ax, self.__ax2, self.__ax3 = fplt.create_plot(symbol, rows=3)

        # plot candle sticks
        candles = self.__df[['time', 'open', 'close', 'high', 'low']]
        fplt.candlestick_ochl(candles, ax=self.__ax)

        # overlay volume on the plot
        volumes = self.__df[['time', 'open', 'close', 'volume']]
        fplt.volume_ocv(volumes, ax=self.__ax2)
        fplt.add_legend("VOLUME", self.__ax2)  # 增加"VOLUME"图例

    """
    plot indicators
    """

    def show(self):
        """最后必须调用此函数以显示图像"""
        fplt.show()

    def plot_last(self, color=None):
        """在图上画出最新成交价这根横线,便于观察"""
        last = self.__market.last()
        array = np.empty(len(self.__kline))
        array.fill(last)
        color = color if color is not None else "#CD7F32"  # 默认设置为红色
        fplt.plot(self.__df['time'],
                  array,
                  color=color,
                  ax=self.__ax,
                  legend="LAST {}".format(last))

    def plot_array(self, array, ax, legend, color=None):
        """
        绘制任意的数组成线性
        :param array: 传入一个数组
        :param ax: 加载在第几行的图上
        :param legend: 图例名称
        :param color: 颜色
        :return:
        """
        if ax == 1:
            ax = self.__ax
        elif ax == 2:
            ax = self.__ax2
        elif ax == 3:
            ax = self.__ax3
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        fplt.plot(self.__df['time'], array, color=color, ax=ax, legend=legend)

    def plot_atr(self, length, color=None):
        """
        在图上画出ATR
        :param length: ATR指标参数
        :param color: 线的颜色
        :return:
        """
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        fplt.plot(self.__df['time'],
                  self.__indicators.ATR(length),
                  color=color,
                  ax=self.__ax3,
                  legend='ATR({})'.format(length))

    def plot_boll(self, length, color1=None, color2=None, color3=None):
        """
        在图上画出布林通道的上轨、中轨、下轨
        :param length: BOLL指标参数
        :param upperband_color: 上轨颜色
        :param middleband_color: 中轨颜色
        :param lowerband_color: 下轨颜色
        :return:
        """
        color1 = color1 if color1 is not None else "#FF0000"  # 默认设置为红色
        color2 = color2 if color2 is not None else "#00FF00"  # 默认设置为绿色
        color3 = color3 if color3 is not None else "#0000FF"  # 默认设置为蓝色
        upperband_array = self.__indicators.BOLL(length)['upperband']
        middleband_array = self.__indicators.BOLL(length)["middleband"]
        lowerband_array = self.__indicators.BOLL(length)["lowerband"]
        fplt.plot(self.__df['time'],
                  upperband_array,
                  color=color1,
                  ax=self.__ax,
                  legend='BOLL({})-UPPERBAND'.format(length))
        fplt.plot(self.__df['time'],
                  middleband_array,
                  color=color2,
                  ax=self.__ax,
                  legend='BOLL({})-MIDDLEBAND'.format(length))
        fplt.plot(self.__df['time'],
                  lowerband_array,
                  color=color3,
                  ax=self.__ax,
                  legend='BOLL({})-LOWERBAND'.format(length))
        # 副图上也加载
        fplt.plot(self.__df['time'],
                  upperband_array,
                  color=color1,
                  ax=self.__ax3,
                  legend='BOLL({})-UPPERBAND'.format(length))
        fplt.plot(self.__df['time'],
                  middleband_array,
                  color=color2,
                  ax=self.__ax3,
                  legend='BOLL({})-MIDDLEBAND'.format(length))
        fplt.plot(self.__df['time'],
                  lowerband_array,
                  color=color3,
                  ax=self.__ax3,
                  legend='BOLL({})-LOWERBAND'.format(length))

    def plot_highest(self, length, color=None):
        """
        在图上画出最高价
        :param length: HIGHEST指标参数
        :param color: 线的颜色
        :return:
        """
        color = color if color is not None else "#FF0000"  # 默认设置红黑色
        fplt.plot(self.__df['time'],
                  self.__indicators.HIGHEST(length),
                  color=color,
                  ax=self.__ax,
                  legend='HIGHEST({})'.format(length))
        # 副图也加载
        fplt.plot(self.__df['time'],
                  self.__indicators.HIGHEST(length),
                  color=color,
                  ax=self.__ax3,
                  legend='HIGHEST({})'.format(length))

    def plot_ma(self, length, color=None):
        """
        在图上画出移动平均线
        :param length: 简单移动平均线参数
        :param color: 线的颜色
        :return:
        """
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 主图与副图加载指标
        fplt.plot(self.__df['time'],
                  self.__indicators.MA(length),
                  color=color,
                  ax=self.__ax,
                  legend='MA({})'.format(length))
        fplt.plot(self.__df['time'],
                  self.__indicators.MA(length),
                  color=color,
                  ax=self.__ax3,
                  legend='MA({})'.format(length))

    def plot_macd(self,
                  fastperiod,
                  slowperiod,
                  signalperiod,
                  color1=None,
                  color2=None,
                  color3=None):
        """
        在图上画出MACD指标
        :param fastperiod:
        :param slowperiod:
        :param signalperiod:
        :param color1:
        :param color2:
        :param color3:
        :return:
        """
        color1 = color1 if color1 is not None else "#FF0000"  # 默认设置为红色
        color2 = color2 if color2 is not None else "#00FF00"  # 默认设置为绿色
        color3 = color3 if color3 is not None else "#0000FF"  # 默认设置为蓝色
        dif = self.__indicators.MACD(fastperiod, slowperiod,
                                     signalperiod)['DIF']
        dea = self.__indicators.MACD(fastperiod, slowperiod,
                                     signalperiod)["DEA"]
        macd = self.__indicators.MACD(fastperiod, slowperiod,
                                      signalperiod)["MACD"]
        fplt.plot(self.__df['time'],
                  dif,
                  color=color1,
                  ax=self.__ax3,
                  legend='MACD({}, {}, {})-DIF'.format(fastperiod, slowperiod,
                                                       signalperiod))
        fplt.plot(self.__df['time'],
                  dea,
                  color=color2,
                  ax=self.__ax3,
                  legend='MACD({}, {}, {})-DEA'.format(fastperiod, slowperiod,
                                                       signalperiod))
        fplt.plot(self.__df['time'],
                  macd,
                  color=color3,
                  ax=self.__ax3,
                  legend='MACD({}, {}, {})-MACD'.format(
                      fastperiod, slowperiod, signalperiod))

    def plot_ema(self, length, color=None):
        """
        在图上画出EMA指标
        :param length:
        :param color:
        :return:
        """
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        fplt.plot(self.__df['time'],
                  self.__indicators.EMA(length),
                  color=color,
                  ax=self.__ax,
                  legend='EMA({})'.format(length))
        # 副图也加载
        fplt.plot(self.__df['time'],
                  self.__indicators.EMA(length),
                  color=color,
                  ax=self.__ax3,
                  legend='EMA({})'.format(length))

    def plot_kama(self, length, color=None):
        """在图上画出KAMA指标"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        fplt.plot(self.__df['time'],
                  self.__indicators.KAMA(length),
                  color=color,
                  ax=self.__ax,
                  legend='KAMA({})'.format(length))
        # 副图也加载
        fplt.plot(self.__df['time'],
                  self.__indicators.KAMA(length),
                  color=color,
                  ax=self.__ax3,
                  legend='KAMA({})'.format(length))

    def plot_kdj(self,
                 fastk_period,
                 slowk_period,
                 slowd_period,
                 color1=None,
                 color2=None):
        """
        在图上画出KDJ指标
        :param fastk_period:
        :param slowk_period:
        :param slowd_period:
        :param color1:
        :param color2:
        :param color3:
        :return:
        """
        color1 = color1 if color1 is not None else "#FF0000"  # 默认设置为红色
        color2 = color2 if color2 is not None else "#00FF00"  # 默认设置为绿色
        k = self.__indicators.KDJ(fastk_period, slowk_period,
                                  slowd_period)['k']
        d = self.__indicators.KDJ(fastk_period, slowk_period,
                                  slowd_period)["d"]
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  k,
                  color=color1,
                  ax=self.__ax3,
                  legend='KDJ({}, {}, {})-K'.format(fastk_period, slowk_period,
                                                    slowd_period))
        fplt.plot(self.__df['time'],
                  d,
                  color=color2,
                  ax=self.__ax3,
                  legend='KDJ({}, {}, {})-D'.format(fastk_period, slowk_period,
                                                    slowd_period))

    def plot_lowest(self, length, color=None):
        """LOWEST"""
        color = color if color is not None else "#FF0000"  # 默认设置红黑色
        fplt.plot(self.__df['time'],
                  self.__indicators.LOWEST(length),
                  color=color,
                  ax=self.__ax,
                  legend='LOWEST({})'.format(length))
        # 副图也加载
        fplt.plot(self.__df['time'],
                  self.__indicators.LOWEST(length),
                  color=color,
                  ax=self.__ax3,
                  legend='LOWEST({})'.format(length))

    def plot_obv(self, color=None):
        """OBV"""
        color = color if color is not None else "#FF0000"  # 默认设置红黑色
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  self.__indicators.OBV(),
                  color=color,
                  ax=self.__ax3,
                  legend='OBV')

    def plot_rsi(self, length, color=None):
        """RSI"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  self.__indicators.RSI(length),
                  color=color,
                  ax=self.__ax3,
                  legend='RSI({})'.format(length))

    def plot_roc(self, length, color=None):
        """ROC"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  self.__indicators.ROC(length),
                  color=color,
                  ax=self.__ax3,
                  legend='ROC({})'.format(length))

    def plot_stochrsi(self,
                      timeperiod,
                      fastk_period,
                      fastd_period,
                      color1=None,
                      color2=None):
        """STOCHRSI"""
        color1 = color1 if color1 is not None else "#FF0000"  # 默认设置为红色
        color2 = color2 if color2 is not None else "#00FF00"  # 默认设置为绿色
        stochrsi = self.__indicators.STOCHRSI(timeperiod, fastk_period,
                                              fastd_period)['stochrsi']
        fastk = self.__indicators.STOCHRSI(timeperiod, fastk_period,
                                           fastd_period)["fastk"]
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  stochrsi,
                  color=color1,
                  ax=self.__ax3,
                  legend='STOCHRSI({}, {}, {})-STOCHRSI'.format(
                      timeperiod, fastk_period, fastd_period))
        fplt.plot(self.__df['time'],
                  fastk,
                  color=color2,
                  ax=self.__ax3,
                  legend='STOCHRSI({}, {}, {})-FASTK'.format(
                      timeperiod, fastk_period, fastd_period))

    def plot_sar(self, color=None):
        """
        在图上画出SAR
        :param length: SAR指标参数
        :param color: 线的颜色
        :return:
        """
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 主副图均加载
        fplt.plot(self.__df['time'],
                  self.__indicators.SAR(),
                  color=color,
                  ax=self.__ax,
                  legend='SAR')
        fplt.plot(self.__df['time'],
                  self.__indicators.SAR(),
                  color=color,
                  ax=self.__ax3,
                  legend='SAR')

    def plot_stddev(self, length, color=None):
        """STDDEV"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  self.__indicators.STDDEV(length),
                  color=color,
                  ax=self.__ax3,
                  legend='STDDEV({})'.format(length))

    def plot_trix(self, length, color=None):
        """STDDEV"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 仅副图加载
        fplt.plot(self.__df['time'],
                  self.__indicators.TRIX(length),
                  color=color,
                  ax=self.__ax3,
                  legend='TRIX({})'.format(length))

    def plot_volume(self, color=None):
        """VOLUME"""
        color = color if color is not None else "#FF0000"  # 默认设置为红色
        # 仅副图均加载
        fplt.plot(self.__df['time'],
                  self.__indicators.VOLUME(),
                  color=color,
                  ax=self.__ax3,
                  legend='VOLUME')
Exemplo n.º 4
0
class SYNCHRONIZE:
    """持仓同步"""

    def __init__(self, databank, database, data_sheet, exchange, instrument_id, time_frame):
        print("{} {} 持仓同步功能已启动!".format(get_localtime(), instrument_id))
        self.__databank = databank
        self.__database = database
        self.__datasheet = data_sheet
        self.__exchange = exchange
        self.__instrument_id = instrument_id
        self.__time_frame = time_frame
        self.__position = POSITION(self.__exchange, self.__instrument_id, self.__time_frame)
        self.__market = MARKET(self.__exchange, self.__instrument_id, self.__time_frame)
        self.__overprice_range = config.overprice_range

    def save_strategy_position(self, strategy_direction, strategy_amount):
        """下单后将仓位信息保存至数据库."""
        if self.__databank == "mysql":
            storage.mysql_save_strategy_position(self.__database, self.__datasheet, strategy_direction,
                                           strategy_amount)
        elif self.__databank == "mongodb":
            storage.mongodb_save(data={"时间": get_localtime(), "strategy_direction": strategy_direction, "strategy_amount": strategy_amount}, database=self.__database, collection=self.__datasheet)
        else:
            raise DataBankError

    def match(self):
        # 获取当前账户持仓信息
        account_direction = self.__position.direction()
        account_amount = self.__position.amount()

        # 获取当前策略应持仓位信息
        if self.__databank == "mysql":
            strategy_direction = storage.read_mysql_datas(0, self.__database, self.__datasheet, "amount", ">=")[-1][-2]
            strategy_amount = storage.read_mysql_datas(0, self.__database, self.__datasheet, "amount", ">=")[-1][-1]
        elif self.__databank == "mongodb":
            strategy_direction = storage.mongodb_read_data(self.__database, self.__datasheet)[-1][0]["strategy_direction"]
            strategy_amount = int(storage.mongodb_read_data(self.__database, self.__datasheet)[-1][0]["strategy_amount"])
        else:
            strategy_direction = None
            strategy_amount = None
            raise DataBankError

        # 比较账户持仓与策略持仓,如不匹配则同步之
        if strategy_direction == "long" and account_direction == "long":
            if account_amount < strategy_amount:
                receipt = self.__exchange.buy(self.__market.last() * (1 + self.__overprice_range), strategy_amount - account_amount, 0)
                return "当前持多,当前实际持仓小于策略应持仓位数量,自动同步结果:{}".format(receipt)
            elif account_amount > strategy_amount:
                receipt = self.__exchange.sell(self.__market.last() * (1 - self.__overprice_range), account_amount - strategy_amount, 0)
                return "当前持多,当前实际持仓大于策略应持仓位数量,自动同步结果:{}".format(receipt)
        if strategy_direction == "short" and account_direction == "short": # 策略与账户均持空时
            if account_amount < strategy_amount:
                receipt = self.__exchange.sellshort(self.__market.last() * (1 - self.__overprice_range), strategy_amount - account_amount, 0)
                return "当前持空,当前实际持仓小于策略应持仓位数量,自动同步结果:{}".format(receipt)
            elif account_amount > strategy_amount:
                receipt = self.__exchange.buytocover(self.__market.last() * (1 + self.__overprice_range), account_amount - strategy_amount, 0)
                return "当前持空,当前实际持仓大于策略应持仓位数量,自动同步结果:{}".format(receipt)
        if strategy_direction == "long" and account_direction == "short": # 策略持多,账户却持空时
            receipt1 = self.__exchange.buytocover(self.__market.last() * (1 + self.__overprice_range), account_amount, 0)
            if "完全成交" not in receipt1:
                return "策略应持多,当前实际持空,自动同步结果:{}".format(receipt1)
            else:
                receipt2 = self.__exchange.buy(self.__market.last() * (1 + self.__overprice_range), strategy_amount, 0)
                return "策略应持多,当前实际持空,自动同步结果:{}".format(receipt1 + receipt2)
        if strategy_direction == "short" and account_direction == "long": # 策略持空,账户却持多时
            receipt1 = self.__exchange.sell(self.__market.last() * (1 - self.__overprice_range), account_amount, 0)
            if "完全成交" not in receipt1:
                return "策略应持空,当前实际持多,自动同步结果:{}".format(receipt1)
            else:
                receipt2 = self.__exchange.sellshort(self.__market.last() * (1 - self.__overprice_range), strategy_amount, 0)
                return "策略应持空,当前实际持多,自动同步结果:{}".format(receipt1 + receipt2)
        if strategy_direction == "none" and account_direction == "long":    # 策略无持仓,账户却持多时
            receipt = self.__exchange.sell(self.__market.last() * (1 - self.__overprice_range), account_amount, 0)
            return "策略应无持仓,当前实际持多,自动同步结果:{}".format(receipt)
        if strategy_direction == "none" and account_direction == "short":     # 策略无持仓,账户却持空时
            receipt = self.__exchange.buytocover(self.__market.last() * (1 + self.__overprice_range), account_amount, 0)
            return "策略应无持仓,当前实际持空,自动同步结果:{}".format(receipt)
        if account_direction == "none" and strategy_direction == "long":     # 账户无持仓,策略却应持多时
            receipt = self.__exchange.buy(self.__market.last() * (1 + self.__overprice_range), strategy_amount, 0)
            return "策略应持多仓,当前实际无持仓,自动同步结果:{}".format(receipt)
        if account_direction == "none" and strategy_direction == "short":     # 账户无持仓,策略却应持空
            receipt = self.__exchange.sellshort(self.__market.last() * (1 - self.__overprice_range), strategy_amount, 0)
            return "策略应持空仓,当前实际无持仓,自动同步结果:{}".format(receipt)
        if account_amount == strategy_amount and account_direction == strategy_direction:
            dict = {"策略持仓方向": strategy_direction, "策略持仓数量": strategy_amount, "账户实际持仓方向": account_direction,
                    "账户实际持仓数量": account_amount}
            return "策略持仓与账户持仓匹配! {}".format(dict)
        else:
            raise MatchError