def test_find_peaks(): x = np.linspace(0,10,300) y = 0.2*gauss(x-0.5,.1) + gauss(x-2,.1) + 0.7*gauss(x-3,0.1) + gauss(x-6,1) # ymin=0.4: ignore first peak at x=0.5 idx0, pos0 = find_peaks(y,x, ymin=0.4) assert idx0 == [60, 90, 179] assert np.allclose(pos0, np.array([2,3,6.]), atol=1e-3)
def test_gibbs(): # number of varied axis points nax = 6 # phonon freq axis freq = np.linspace(0, 1000, 300) # cm^-1 T = np.linspace(5, 2000, 50) P = np.linspace(0, 5, 2) # 2d case case = '2d' cell_a = np.linspace(2.5, 3.5, nax) cell_c = np.linspace(3, 3.8, nax) volfunc_ax = lambda x: x[0]**2 * x[1] axes_flat = np.array([x for x in product(cell_a, cell_c)]) V = np.array([volfunc_ax(x) for x in axes_flat]) cell_a_mean = cell_a.mean() cell_c_mean = cell_c.mean() cell_a_min = cell_a.min() cell_c_min = cell_c.min() etot = np.array([(a - cell_a_mean)**2.0 + (c - cell_c_mean)**2.0 for a, c in axes_flat]) phdos = [] Vmax = V.max() # phonon dos (just a gaussian) shifted to lower (higher) freqs for higher # (lower) volume for ii in range(axes_flat.shape[0]): a, c = axes_flat[ii, :] fc = 550 - 50 * V[ii] / Vmax phdos.append(np.array([freq, gauss(freq - fc, 100) * 0.01]).T) gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x, y: num.Spline(x, y, s=None, k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) dr = 'files/gibbs/2d' for name in os.listdir(dr): fn = '%s/%s' % (dr, name) gref = io.read_h5(fn) print("testing: %s" % fn) compare_dicts_with_arrays(gref, g) tools.assert_dict_with_all_types_almost_equal(gref, g, keys=list(gref.keys()), atol=1e-8, rtol=1e-3) # 1d case case = '1d' V = np.linspace(10, 20, nax) axes_flat = V**(1 / 3.) # cubic volfunc_ax = lambda x: x[0]**3.0 etot = (V - V.mean())**2 fcenter = 450 + 100 * (axes_flat - axes_flat.min()) # fake phonon dos data (Gaussian), shift to lower freq for higher volume phdos = [np.array([freq, gauss(freq - fc, 100)]).T for fc in fcenter[::-1]] gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x, y: num.Spline(x, y, s=None, k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) dr = 'files/gibbs/1d' for name in os.listdir(dr): fn = '%s/%s' % (dr, name) gref = io.read_h5(fn) print("testing: %s" % fn) compare_dicts_with_arrays(gref, g) tools.assert_dict_with_all_types_almost_equal(gref, g, keys=list(gref.keys()), atol=1e-14, rtol=1e-8) # test enthalpy stuff for 1d case # E(V) ev = num.PolyFit1D(g['/ax0/V'], g['/ax0/Etot'], deg=5) # P(V) pv = lambda v: -ev(v, der=1) * constants.eV_by_Ang3_to_GPa assert np.allclose(g['/P/P'], pv(g['/#opt/P/V'])) assert np.allclose(g['/#opt/P/H'], ev(g['/#opt/P/V']) + g['/P/P']*g['/#opt/P/V'] / \ constants.eV_by_Ang3_to_GPa)
axes_flat = np.array([x for x in product(cell_a, cell_c)]) V = np.array([volfunc_ax(x) for x in axes_flat]) cell_a_mean = cell_a.mean() cell_c_mean = cell_c.mean() cell_a_min = cell_a.min() cell_c_min = cell_c.min() etot = np.array([(a - cell_a_mean)**2.0 + (c - cell_c_mean)**2.0 for a, c in axes_flat]) phdos = [] Vmax = V.max() # phonon dos (just a gaussian) shifted to lower (higher) freqs for higher # (lower) volume for ii in range(axes_flat.shape[0]): a, c = axes_flat[ii, :] fc = 550 - 50 * V[ii] / Vmax phdos.append(np.array([freq, gauss(freq - fc, 100) * 0.01]).T) gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x, y: num.Spline(x, y, s=None, k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) common.makedirs('../files/gibbs/2d') io.write_h5('../files/gibbs/2d/%s.h5' % gethostname(), filt_dct(g),
volfunc_ax = lambda x: x[0]**2 * x[1] axes_flat = np.array([x for x in product(cell_a, cell_c)]) V = np.array([volfunc_ax(x) for x in axes_flat]) cell_a_mean = cell_a.mean() cell_c_mean = cell_c.mean() cell_a_min = cell_a.min() cell_c_min = cell_c.min() etot = np.array([(a-cell_a_mean)**2.0 + (c-cell_c_mean)**2.0 for a,c in axes_flat]) phdos = [] Vmax = V.max() # phonon dos (just a gaussian) shifted to lower (higher) freqs for higher # (lower) volume for ii in range(axes_flat.shape[0]): a,c = axes_flat[ii,:] fc = 550 - 50 * V[ii] / Vmax phdos.append(np.array([freq,gauss(freq-fc,100)*0.01]).T) gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x,y: num.Spline(x,y,s=None,k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) common.makedirs('../files/gibbs/2d') io.write_h5('../files/gibbs/2d/%s.h5' %gethostname(), filt_dct(g), mode='w') # 1d case case = '1d' V = np.linspace(10,20,nax) axes_flat = V**(1/3.) # cubic volfunc_ax = lambda x: x[0]**3.0 etot = (V-V.mean())**2
def test_gibbs(): # number of varied axis points nax = 6 # phonon freq axis freq = np.linspace(0,1000,300) # cm^-1 T = np.linspace(5, 2000, 50) P = np.linspace(0,5,2) # 2d case case = '2d' cell_a = np.linspace(2.5,3.5,nax) cell_c = np.linspace(3,3.8,nax) volfunc_ax = lambda x: x[0]**2 * x[1] axes_flat = np.array([x for x in product(cell_a, cell_c)]) V = np.array([volfunc_ax(x) for x in axes_flat]) cell_a_mean = cell_a.mean() cell_c_mean = cell_c.mean() cell_a_min = cell_a.min() cell_c_min = cell_c.min() etot = np.array([(a-cell_a_mean)**2.0 + (c-cell_c_mean)**2.0 for a,c in axes_flat]) phdos = [] Vmax = V.max() # phonon dos (just a gaussian) shifted to lower (higher) freqs for higher # (lower) volume for ii in range(axes_flat.shape[0]): a,c = axes_flat[ii,:] fc = 550 - 50 * V[ii] / Vmax phdos.append(np.array([freq,gauss(freq-fc,100)*0.01]).T) gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x,y: num.Spline(x,y,s=None,k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) dr = 'files/gibbs/2d' for name in os.listdir(dr): fn = '%s/%s' %(dr, name) gref = io.read_h5(fn) print "testing: %s" %fn compare_dicts_with_arrays(gref, g) tools.assert_dict_with_all_types_almost_equal(gref, g, keys=gref.keys(), atol=1e-8, rtol=1e-3) # 1d case case = '1d' V = np.linspace(10,20,nax) axes_flat = V**(1/3.) # cubic volfunc_ax = lambda x: x[0]**3.0 etot = (V-V.mean())**2 fcenter = 450 + 100*(axes_flat - axes_flat.min()) # fake phonon dos data (Gaussian), shift to lower freq for higher volume phdos = [np.array([freq,gauss(freq-fc, 100)]).T for fc in fcenter[::-1]] gibbs = Gibbs(T=T, P=P, etot=etot, phdos=phdos, axes_flat=axes_flat, volfunc_ax=volfunc_ax, case=case, dosarea=None) gibbs.set_fitfunc('C', lambda x,y: num.Spline(x,y,s=None,k=5, eps=1e-5)) g = gibbs.calc_G(calc_all=True) dr = 'files/gibbs/1d' for name in os.listdir(dr): fn = '%s/%s' %(dr, name) gref = io.read_h5(fn) print "testing: %s" %fn compare_dicts_with_arrays(gref, g) tools.assert_dict_with_all_types_almost_equal(gref, g, keys=gref.keys(), atol=1e-14, rtol=1e-14) # test enthalpy stuff for 1d case # E(V) ev = num.PolyFit1D(g['/ax0/V'], g['/ax0/Etot'], deg=5) # P(V) pv = lambda v: -ev(v, der=1)*constants.eV_by_Ang3_to_GPa assert np.allclose(g['/P/P'], pv(g['/#opt/P/V'])) assert np.allclose(g['/#opt/P/H'], ev(g['/#opt/P/V']) + g['/P/P']*g['/#opt/P/V'] / \ constants.eV_by_Ang3_to_GPa)