Exemplo n.º 1
0
        # Apply an hmm for segmentation-classificaiton to a WAV file
        segmentclassifyFileWrapperHMM(args.input, args.hmm)
    elif args.task == "segmentationEvaluation":
        # Evaluate segmentation-classification for a list of WAV files
        # (and ground truth CSVs) stored in a folder
        segmentationEvaluation(args.input, args.modelName, args.model)
    elif args.task == "regressionFile":
        # Apply a regression model to an audio signal stored in a WAV file
        regressionFileWrapper(args.input, args.model, args.regression)
    elif args.task == "classifyFolder":
        # Classify every WAV file in a given path
        classifyFolderWrapper(args.input, args.model, args.classifier,
                              args.details)
    elif args.task == "regressionFolder":
        # Apply a regression model on every WAV file in a given path
        regressionFolderWrapper(args.input, args.model, args.regression)
    elif args.task == "silenceRemoval":
        # Detect non-silent segments in a WAV file and
        # output to seperate WAV files
        silenceRemovalWrapper(args.input, args.smoothing, args.weight)
    elif args.task == "speakerDiarization":
        # Perform speaker diarization on a WAV file
        speakerDiarizationWrapper(args.input, args.num, args.flsd)
    elif args.task == "speakerDiarizationScriptEval":
        # Evaluate speaker diarization given a folder that contains
        # WAV files and .segment (Groundtruth files)
        aS.speakerDiarizationEvaluateScript(args.input, args.LDAs)
    elif args.task == "thumbnail":
        # Audio thumbnailing
        thumbnailWrapper(args.input, args.size)
Exemplo n.º 2
0
        # Apply an hmm for segmentation-classificaiton to a WAV file
        segmentclassifyFileWrapperHMM(args.input, args.hmm)
    elif args.task == "segmentationEvaluation":
        # Evaluate segmentation-classification for a list of WAV files
        # (and ground truth CSVs) stored in a folder
        segmentationEvaluation(args.input, args.modelName, args.model)
    elif args.task == "regressionFile":
        # Apply a regression model to an audio signal stored in a WAV file
        regressionFileWrapper(args.input, args.model, args.regression)
    elif args.task == "classifyFolder":
        # Classify every WAV file in a given path
        classifyFolderWrapper(args.input, args.model, args.classifier,
                              args.details)
    elif args.task == "regressionFolder":
        # Apply a regression model on every WAV file in a given path
        regressionFolderWrapper(args.input, args.model, args.regression)
    elif args.task == "silenceRemoval":
        # Detect non-silent segments in a WAV file and
        # output to seperate WAV files
        silenceRemovalWrapper(args.input, args.smoothing, args.weight)
    elif args.task == "speakerDiarization":
        # Perform speaker diarization on a WAV file
        speakerDiarizationWrapper(args.input, args.num, args.flsd)
    elif args.task == "speakerDiarizationScriptEval":
        # Evaluate speaker diarization given a folder that contains
        # WAV files and .segment (Groundtruth files)
        aS.speakerDiarizationEvaluateScript(args.input, args.LDAs)
    elif args.task == "thumbnail":
        # Audio thumbnailing
        thumbnailWrapper(args.input, args.size)