data = load_data.get_data() input_data = data['input'] output_data = data['output'] train_in = input_data[train_idx] train_out_truth = output_data[train_idx] test_in = input_data[test_idx] test_out_truth = output_data[test_idx] #make our network and run dat dynamical boi esn = pyESN.ESN(n_inputs=train_in.shape[1], n_outputs=train_out_truth.shape[1], n_reservoir=700, spectral_radius=.8, noise=.08, silent=False, sparsity=.92, random_state=42) print("training network...") machine_training_out = esn.fit(train_in, train_out_truth, inspect=False) print("done training network.") for pred_col in range(1): #train_out_truth.shape[1] ) : plt.title("training results for col " + str(pred_col)) plt.plot(machine_training_out[:, pred_col], label="machine pred") plt.plot(train_out_truth[:, pred_col], label="truth") plt.legend(loc='best') plt.show()
data = load_data.get_data() move_data = data['move_data'][:, 0:1] neuron_data = data['neuron_data'] train_in = neuron_data[train_idx] train_out_truth = move_data[train_idx] test_in = neuron_data[test_idx] test_out_truth = move_data[test_idx] #make our network and run dat dynamical boi esn = pyESN.ESN(n_inputs=train_in.shape[1], n_outputs=train_out_truth.shape[1], n_reservoir=1000, spectral_radius=.3, teacher_forcing=False, noise=.001, sparsity=.42, random_state=42) print("training network...") machine_training_out = esn.fit(train_in, train_out_truth, inspect=False) print("done training network.") plt.title("training results") plt.plot(machine_training_out[:, 0], label="machine pred") plt.plot(train_out_truth[:, 0], label="truth") plt.legend(loc='best') plt.show() #compute our err on trained output (should be small)