Exemplo n.º 1
0
    vid_start_end = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\vid_real_time\\"

    #Save_locations

    ecog_cluster_loc= "E:\\cluster_results_fewer_frequencies2\\" + sbj_id + "\\"
    extracted_label_loc="C:\\Users\\wangnxr\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_reduced\\"
    extracted_random_label_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_random\\"
    label_accuracy_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\validation_fewer_frequencies\\" + sbj_id + "\\"
    back_project_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\back_project_fewer_frequencies\\"

    #Internal_save_variables
    best_corr_clusters=[]

    #Generate clusters
    print "Starting: Clustering"
    truncated_hier_cluster.hier_cluster_main(sbj_id,dates,ecog_feature_loc,ecog_cluster_loc)
    print "Finished: Clustering"

    # #Plot Clusters
    # #
    # font = {'family' : 'serif',
    #     'size'   : 15}
    #
    # matplotlib.rc('font', **font)
    #
    # time_s = time(9,0,0)
    # day = date(2015,6,11)
    # start_time = datetime.combine(day, time_s)
    # for lev in [2]:
    #     f, plots=plt.subplots(1)
    #     f.set_size_inches(20.5, 10.5)
Exemplo n.º 2
0
    #Save_locations

    ecog_cluster_loc = "E:\\cluster_results\\" + sbj_id + "\\"
    extracted_label_loc = "C:\\Users\\wangnxr\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_reduced\\"
    extracted_random_label_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_random\\"
    label_accuracy_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\validation\\" + sbj_id + "\\"
    back_project_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\back_project\\"

    #Internal_save_variables
    best_corr_clusters = []

    #Generate clusters
    print "Starting: Clustering"
    truncated_hier_cluster.hier_cluster_main(sbj_id,
                                             dates,
                                             ecog_feature_loc,
                                             ecog_cluster_loc,
                                             type="high_freq")
    print "Finished: Clustering"

    # #Plot Clusters
    # #
    # font = {'family' : 'serif',
    #     'size'   : 15}
    #
    # matplotlib.rc('font', **font)
    #
    # time_s = time(9,0,0)
    # day = date(2015,6,11)
    # start_time = datetime.combine(day, time_s)
    # for lev in [2]:
Exemplo n.º 3
0
    vid_start_end = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\vid_real_time\\"

    #Save_locations

    ecog_cluster_loc= "E:\\cluster_results\\" + sbj_id + "\\"
    extracted_label_loc="C:\\Users\\wangnxr\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_reduced\\"
    extracted_random_label_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_random\\"
    label_accuracy_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\validation\\" + sbj_id + "\\"
    back_project_loc="C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\back_project\\"

    #Internal_save_variables
    best_corr_clusters=[]

    #Generate clusters
    print "Starting: Clustering"
    truncated_hier_cluster.hier_cluster_main(sbj_id,dates,ecog_feature_loc,ecog_cluster_loc, type="high_freq")
    print "Finished: Clustering"

    # #Plot Clusters
    # #
    # font = {'family' : 'serif',
    #     'size'   : 15}
    #
    # matplotlib.rc('font', **font)
    #
    # time_s = time(9,0,0)
    # day = date(2015,6,11)
    # start_time = datetime.combine(day, time_s)
    # for lev in [2]:
    #     f, plots=plt.subplots(1)
    #     f.set_size_inches(20.5, 10.5)
Exemplo n.º 4
0
    vid_start_end = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\vid_real_time\\"

    #Save_locations

    ecog_cluster_loc = "E:\\cluster_results_fewer_frequencies2\\" + sbj_id + "\\"
    extracted_label_loc = "C:\\Users\\wangnxr\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_reduced\\"
    extracted_random_label_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\manual_annotations\\extracted_labels_random\\"
    label_accuracy_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\validation_fewer_frequencies\\" + sbj_id + "\\"
    back_project_loc = "C:\\Users\\wangnxr\\Documents\\rao_lab\\video_analysis\\back_project_fewer_frequencies\\"

    #Internal_save_variables
    best_corr_clusters = []

    #Generate clusters
    print "Starting: Clustering"
    truncated_hier_cluster.hier_cluster_main(sbj_id, dates, ecog_feature_loc,
                                             ecog_cluster_loc)
    print "Finished: Clustering"

    # #Plot Clusters
    # #
    # font = {'family' : 'serif',
    #     'size'   : 15}
    #
    # matplotlib.rc('font', **font)
    #
    # time_s = time(9,0,0)
    # day = date(2015,6,11)
    # start_time = datetime.combine(day, time_s)
    # for lev in [2]:
    #     f, plots=plt.subplots(1)
    #     f.set_size_inches(20.5, 10.5)