Exemplo n.º 1
0
def main(argv):
    print 'Running pyEnsSumPop!'

    # Get command line stuff and store in a dictionary
    s = 'nyear= nmonth= npert= tag= res= mach= compset= sumfile= indir= tslice= verbose jsonfile= mpi_enable zscoreonly nrand= rand seq= jsondir='
    optkeys = s.split()
    try:
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSumPop_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict = {}

    # Defaults
    opts_dict['tag'] = 'cesm1_2_0'
    opts_dict['compset'] = 'FC5'
    opts_dict['mach'] = 'yellowstone'
    opts_dict['tslice'] = 0
    opts_dict['nyear'] = 3
    opts_dict['nmonth'] = 12
    opts_dict['npert'] = 40
    opts_dict['nbin'] = 40
    opts_dict['minrange'] = 0.0
    opts_dict['maxrange'] = 4.0
    opts_dict['res'] = 'ne30_ne30'
    opts_dict['sumfile'] = 'ens.pop.summary.nc'
    opts_dict['indir'] = './'
    opts_dict['jsonfile'] = ''
    opts_dict['verbose'] = True
    opts_dict['mpi_enable'] = False
    opts_dict['zscoreonly'] = False
    opts_dict['popens'] = True
    opts_dict['nrand'] = 40
    opts_dict['rand'] = False
    opts_dict['seq'] = 0
    opts_dict['jsondir'] = '/glade/scratch/haiyingx/'

    # This creates the dictionary of input arguments
    print "before parseconfig"
    opts_dict = pyEnsLib.getopt_parseconfig(opts, optkeys, 'ESP', opts_dict)

    verbose = opts_dict['verbose']
    nbin = opts_dict['nbin']

    if verbose:
        print opts_dict

    # Now find file names in indir
    input_dir = opts_dict['indir']

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me = simplecomm.create_comm()
    else:
        me = simplecomm.create_comm(not opts_dict['mpi_enable'])
    if opts_dict['jsonfile']:
        # Read in the included var list
        Var2d, Var3d = pyEnsLib.read_jsonlist(opts_dict['jsonfile'], 'ESP')
        str_size = 0
        for str in Var3d:
            if str_size < len(str):
                str_size = len(str)
        for str in Var2d:
            if str_size < len(str):
                str_size = len(str)

    in_files = []
    if (os.path.exists(input_dir)):
        # Pick up the 'nrand' random number of input files to generate summary files
        if opts_dict['rand']:
            in_files = pyEnsLib.Random_pickup_pop(input_dir, opts_dict,
                                                  opts_dict['nrand'])
        else:
            # Get the list of files
            in_files_temp = os.listdir(input_dir)
            in_files = sorted(in_files_temp)
        # Make sure we have enough
        num_files = len(in_files)
    else:
        print 'Input directory: ', input_dir, ' not found'
        sys.exit(2)

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me = simplecomm.create_comm()
    else:
        me = simplecomm.create_comm(not opts_dict['mpi_enable'])
    #Partition the input file list
    in_file_list = me.partition(in_files, func=EqualStride(), involved=True)

    # Open the files in the input directory
    o_files = []
    for onefile in in_file_list:
        if (os.path.isfile(input_dir + '/' + onefile)):
            o_files.append(Nio.open_file(input_dir + '/' + onefile, "r"))
        else:
            print "COULD NOT LOCATE FILE " + input_dir + onefile + "! EXITING...."
            sys.exit()

    print in_file_list

    # Store dimensions of the input fields
    if (verbose == True):
        print "Getting spatial dimensions"
    nlev = -1
    nlat = -1
    nlon = -1

    # Look at first file and get dims
    input_dims = o_files[0].dimensions
    ndims = len(input_dims)

    # Make sure all files have the same dimensions
    for key in input_dims:
        if key == "z_t":
            nlev = input_dims["z_t"]
        elif key == "nlon":
            nlon = input_dims["nlon"]
        elif key == "nlat":
            nlat = input_dims["nlat"]

    for count, this_file in enumerate(o_files):
        input_dims = this_file.dimensions
        if ( nlev != int(input_dims["z_t"]) or ( nlat != int(input_dims["nlat"]))\
              or ( nlon != int(input_dims["nlon"]))):
            print "Dimension mismatch between ", in_file_list[
                0], 'and', in_file_list[count], '!!!'
            sys.exit()

    # Create new summary ensemble file
    this_sumfile = opts_dict["sumfile"]

    if verbose:
        print "Creating ", this_sumfile, "  ..."
    if (me.get_rank() == 0):
        if os.path.exists(this_sumfile):
            os.unlink(this_sumfile)
        opt = Nio.options()
        opt.PreFill = False
        opt.Format = 'NetCDF4Classic'

        nc_sumfile = Nio.open_file(this_sumfile, 'w', options=opt)

        # Set dimensions
        if (verbose == True):
            print "Setting dimensions ....."
        nc_sumfile.create_dimension('nlat', nlat)
        nc_sumfile.create_dimension('nlon', nlon)
        nc_sumfile.create_dimension('nlev', nlev)
        nc_sumfile.create_dimension('time', None)
        nc_sumfile.create_dimension('ens_size', opts_dict['npert'])
        nc_sumfile.create_dimension('nbin', opts_dict['nbin'])
        nc_sumfile.create_dimension('nvars', len(Var3d) + len(Var2d))
        nc_sumfile.create_dimension('nvars3d', len(Var3d))
        nc_sumfile.create_dimension('nvars2d', len(Var2d))
        nc_sumfile.create_dimension('str_size', str_size)

        # Set global attributes
        now = time.strftime("%c")
        if (verbose == True):
            print "Setting global attributes ....."
        setattr(nc_sumfile, 'creation_date', now)
        setattr(nc_sumfile, 'title', 'POP verification ensemble summary file')
        setattr(nc_sumfile, 'tag', opts_dict["tag"])
        setattr(nc_sumfile, 'compset', opts_dict["compset"])
        setattr(nc_sumfile, 'resolution', opts_dict["res"])
        setattr(nc_sumfile, 'machine', opts_dict["mach"])

        # Create variables
        if (verbose == True):
            print "Creating variables ....."
        v_lev = nc_sumfile.create_variable("lev", 'f', ('nlev', ))
        v_vars = nc_sumfile.create_variable("vars", 'S1',
                                            ('nvars', 'str_size'))
        v_var3d = nc_sumfile.create_variable("var3d", 'S1',
                                             ('nvars3d', 'str_size'))
        v_var2d = nc_sumfile.create_variable("var2d", 'S1',
                                             ('nvars2d', 'str_size'))
        v_time = nc_sumfile.create_variable("time", 'd', ('time', ))
        v_ens_avg3d = nc_sumfile.create_variable(
            "ens_avg3d", 'f', ('time', 'nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_stddev3d = nc_sumfile.create_variable(
            "ens_stddev3d", 'f', ('time', 'nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_avg2d = nc_sumfile.create_variable(
            "ens_avg2d", 'f', ('time', 'nvars2d', 'nlat', 'nlon'))
        v_ens_stddev2d = nc_sumfile.create_variable(
            "ens_stddev2d", 'f', ('time', 'nvars2d', 'nlat', 'nlon'))

        v_RMSZ = nc_sumfile.create_variable(
            "RMSZ", 'f', ('time', 'nvars', 'ens_size', 'nbin'))
        if not opts_dict['zscoreonly']:
            v_gm = nc_sumfile.create_variable("global_mean", 'f',
                                              ('time', 'nvars', 'ens_size'))

        # Assign vars, var3d and var2d
        if (verbose == True):
            print "Assigning vars, var3d, and var2d ....."

        eq_all_var_names = []
        eq_d3_var_names = []
        eq_d2_var_names = []
        all_var_names = list(Var3d)
        all_var_names += Var2d
        l_eq = len(all_var_names)
        for i in range(l_eq):
            tt = list(all_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_all_var_names.append(tt)

        l_eq = len(Var3d)
        for i in range(l_eq):
            tt = list(Var3d[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d3_var_names.append(tt)

        l_eq = len(Var2d)
        for i in range(l_eq):
            tt = list(Var2d[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d2_var_names.append(tt)

        v_vars[:] = eq_all_var_names[:]
        v_var3d[:] = eq_d3_var_names[:]
        v_var2d[:] = eq_d2_var_names[:]

        # Time-invarient metadata
        if (verbose == True):
            print "Assigning time invariant metadata ....."
        vars_dict = o_files[0].variables
        lev_data = vars_dict["z_t"]
        v_lev = lev_data

    # Time-varient metadata
    if verbose:
        print "Assigning time variant metadata ....."
    vars_dict = o_files[0].variables
    time_value = vars_dict['time']
    time_array = np.array([time_value])
    time_array = pyEnsLib.gather_npArray_pop(time_array, me, (me.get_size(), ))
    if me.get_rank() == 0:
        v_time[:] = time_array[:]

    # Calculate global mean, average, standard deviation
    if verbose:
        print "Calculating global means ....."
    is_SE = False
    tslice = 0
    if not opts_dict['zscoreonly']:
        gm3d, gm2d = pyEnsLib.generate_global_mean_for_summary(
            o_files, Var3d, Var2d, is_SE, False, opts_dict)
    if verbose:
        print "Finish calculating global means ....."

    # Calculate RMSZ scores
    if (verbose == True):
        print "Calculating RMSZ scores ....."
    zscore3d, zscore2d, ens_avg3d, ens_stddev3d, ens_avg2d, ens_stddev2d, temp1, temp2 = pyEnsLib.calc_rmsz(
        o_files, Var3d, Var2d, is_SE, opts_dict)

    # Collect from all processors
    if opts_dict['mpi_enable']:
        # Gather the 3d variable results from all processors to the master processor
        # Gather global means 3d results
        if not opts_dict['zscoreonly']:
            gmall = np.concatenate((gm3d, gm2d), axis=0)
            #print "before gather, gmall.shape=",gmall.shape
            gmall = pyEnsLib.gather_npArray_pop(
                gmall, me,
                (me.get_size(), len(Var3d) + len(Var2d), len(o_files)))
        zmall = np.concatenate((zscore3d, zscore2d), axis=0)
        zmall = pyEnsLib.gather_npArray_pop(
            zmall, me,
            (me.get_size(), len(Var3d) + len(Var2d), len(o_files), nbin))
        #print 'zmall=',zmall

        #print "after gather, gmall.shape=",gmall.shape
        ens_avg3d = pyEnsLib.gather_npArray_pop(
            ens_avg3d, me, (me.get_size(), len(Var3d), nlev, (nlat), nlon))
        ens_avg2d = pyEnsLib.gather_npArray_pop(ens_avg2d, me,
                                                (me.get_size(), len(Var2d),
                                                 (nlat), nlon))
        ens_stddev3d = pyEnsLib.gather_npArray_pop(
            ens_stddev3d, me, (me.get_size(), len(Var3d), nlev, (nlat), nlon))
        ens_stddev2d = pyEnsLib.gather_npArray_pop(ens_stddev2d, me,
                                                   (me.get_size(), len(Var2d),
                                                    (nlat), nlon))

    # Assign to file:
    if me.get_rank() == 0:
        #Zscoreall=np.concatenate((zscore3d,zscore2d),axis=0)
        v_RMSZ[:, :, :, :] = zmall[:, :, :, :]
        v_ens_avg3d[:, :, :, :, :] = ens_avg3d[:, :, :, :, :]
        v_ens_stddev3d[:, :, :, :, :] = ens_stddev3d[:, :, :, :, :]
        v_ens_avg2d[:, :, :, :] = ens_avg2d[:, :, :, :]
        v_ens_stddev2d[:, :, :, :] = ens_stddev2d[:, :, :, :]
        if not opts_dict['zscoreonly']:
            v_gm[:, :, :] = gmall[:, :, :]
        print "All done"
Exemplo n.º 2
0
def main(argv):

    # Get command line stuff and store in a dictionary
    s = 'nyear= nmonth= npert= tag= res= mach= compset= sumfile= indir= tslice= verbose jsonfile= mpi_enable mpi_disable nrand= rand seq= jsondir= esize='
    optkeys = s.split()
    try:
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSumPop_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict = {}

    # Defaults
    opts_dict['tag'] = 'cesm2_1_0'
    opts_dict['compset'] = 'G'
    opts_dict['mach'] = 'cheyenne'
    opts_dict['tslice'] = 0
    opts_dict['nyear'] = 1
    opts_dict['nmonth'] = 12
    opts_dict['esize'] = 40
    opts_dict['npert'] = 0  #for backwards compatible
    opts_dict['nbin'] = 40
    opts_dict['minrange'] = 0.0
    opts_dict['maxrange'] = 4.0
    opts_dict['res'] = 'T62_g17'
    opts_dict['sumfile'] = 'pop.ens.summary.nc'
    opts_dict['indir'] = './'
    opts_dict['jsonfile'] = 'pop_ensemble.json'
    opts_dict['verbose'] = True
    opts_dict['mpi_enable'] = True
    opts_dict['mpi_disable'] = False
    #opts_dict['zscoreonly'] = True
    opts_dict['popens'] = True
    opts_dict['nrand'] = 40
    opts_dict['rand'] = False
    opts_dict['seq'] = 0
    opts_dict['jsondir'] = './'

    # This creates the dictionary of input arguments
    #print "before parseconfig"
    opts_dict = pyEnsLib.getopt_parseconfig(opts, optkeys, 'ESP', opts_dict)

    verbose = opts_dict['verbose']
    nbin = opts_dict['nbin']

    if opts_dict['mpi_disable']:
        opts_dict['mpi_enable'] = False

    #still have npert for backwards compatibility - check if it was set
    #and override esize
    if opts_dict['npert'] > 0:
        user_size = opts_dict['npert']
        print(
            'WARNING: User specified value for --npert will override --esize.  Please consider using --esize instead of --npert in the future.'
        )
        opts_dict['esize'] = user_size

    # Now find file names in indir
    input_dir = opts_dict['indir']

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me = simplecomm.create_comm()
    else:
        me = simplecomm.create_comm(False)

    if opts_dict['jsonfile']:
        # Read in the included var list
        Var2d, Var3d = pyEnsLib.read_jsonlist(opts_dict['jsonfile'], 'ESP')
        str_size = 0
        for str in Var3d:
            if str_size < len(str):
                str_size = len(str)
        for str in Var2d:
            if str_size < len(str):
                str_size = len(str)

    if me.get_rank() == 0:
        print('STATUS: Running pyEnsSumPop!')

        if verbose:
            print("VERBOSE: opts_dict = ")
            print(opts_dict)

    in_files = []
    if (os.path.exists(input_dir)):
        # Pick up the 'nrand' random number of input files to generate summary files
        if opts_dict['rand']:
            in_files = pyEnsLib.Random_pickup_pop(input_dir, opts_dict,
                                                  opts_dict['nrand'])
        else:
            # Get the list of files
            in_files_temp = os.listdir(input_dir)
            in_files = sorted(in_files_temp)
        num_files = len(in_files)

    else:
        if me.get_rank() == 0:
            print('ERROR: Input directory: ', input_dir,
                  ' not found => EXITING....')
        sys.exit(2)

    #make sure we have enough files
    files_needed = opts_dict['nmonth'] * opts_dict['esize'] * opts_dict['nyear']
    if (num_files < files_needed):
        if me.get_rank() == 0:
            print(
                'ERROR: Input directory does not contain enough files (must be esize*nyear*nmonth = ',
                files_needed, ' ) and it has only ', num_files, ' files).')
        sys.exit(2)

    #Partition the input file list (ideally we have one processor per month)
    in_file_list = me.partition(in_files, func=EqualStride(), involved=True)

    # Check the files in the input directory
    full_in_files = []
    if me.get_rank() == 0 and opts_dict['verbose']:
        print('VERBOSE: Input files are:')

    for onefile in in_file_list:
        fname = input_dir + '/' + onefile
        if opts_dict['verbose']:
            print("my_rank = ", me.get_rank(), "  ", fname)
        if (os.path.isfile(fname)):
            full_in_files.append(fname)
        else:
            print("ERROR: Could not locate file: " + fname + " => EXITING....")
            sys.exit()

    #open just the first file (all procs)
    first_file = nc.Dataset(full_in_files[0], "r")

    # Store dimensions of the input fields
    if (verbose == True) and me.get_rank() == 0:
        print("VERBOSE: Getting spatial dimensions")
    nlev = -1
    nlat = -1
    nlon = -1

    # Look at first file and get dims
    input_dims = first_file.dimensions
    ndims = len(input_dims)

    # Make sure all files have the same dimensions
    if (verbose == True) and me.get_rank() == 0:
        print("VERBOSE: Checking dimensions ...")
    for key in input_dims:
        if key == "z_t":
            nlev = len(input_dims["z_t"])
        elif key == "nlon":
            nlon = len(input_dims["nlon"])
        elif key == "nlat":
            nlat = len(input_dims["nlat"])

    # Rank 0: prepare new summary ensemble file
    this_sumfile = opts_dict["sumfile"]
    if (me.get_rank() == 0):
        if os.path.exists(this_sumfile):
            os.unlink(this_sumfile)

        if verbose:
            print("VERBOSE: Creating ", this_sumfile, "  ...")

        nc_sumfile = nc.Dataset(this_sumfile, "w", format="NETCDF4_CLASSIC")

        # Set dimensions
        if verbose:
            print("VERBOSE: Setting dimensions .....")
        nc_sumfile.createDimension('nlat', nlat)
        nc_sumfile.createDimension('nlon', nlon)
        nc_sumfile.createDimension('nlev', nlev)
        nc_sumfile.createDimension('time', None)
        nc_sumfile.createDimension('ens_size', opts_dict['esize'])
        nc_sumfile.createDimension('nbin', opts_dict['nbin'])
        nc_sumfile.createDimension('nvars', len(Var3d) + len(Var2d))
        nc_sumfile.createDimension('nvars3d', len(Var3d))
        nc_sumfile.createDimension('nvars2d', len(Var2d))
        nc_sumfile.createDimension('str_size', str_size)

        # Set global attributes
        now = time.strftime("%c")
        if verbose:
            print("VERBOSE: Setting global attributes .....")
        nc_sumfile.creation_date = now
        nc_sumfile.title = 'POP verification ensemble summary file'
        nc_sumfile.tag = opts_dict["tag"]
        nc_sumfile.compset = opts_dict["compset"]
        nc_sumfile.resolution = opts_dict["res"]
        nc_sumfile.machine = opts_dict["mach"]

        # Create variables
        if verbose:
            print("VERBOSE: Creating variables .....")
        v_lev = nc_sumfile.createVariable("z_t", 'f', ('nlev', ))
        v_vars = nc_sumfile.createVariable("vars", 'S1', ('nvars', 'str_size'))
        v_var3d = nc_sumfile.createVariable("var3d", 'S1',
                                            ('nvars3d', 'str_size'))
        v_var2d = nc_sumfile.createVariable("var2d", 'S1',
                                            ('nvars2d', 'str_size'))
        v_time = nc_sumfile.createVariable("time", 'd', ('time', ))
        v_ens_avg3d = nc_sumfile.createVariable(
            "ens_avg3d", 'f', ('time', 'nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_stddev3d = nc_sumfile.createVariable(
            "ens_stddev3d", 'f', ('time', 'nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_avg2d = nc_sumfile.createVariable(
            "ens_avg2d", 'f', ('time', 'nvars2d', 'nlat', 'nlon'))
        v_ens_stddev2d = nc_sumfile.createVariable(
            "ens_stddev2d", 'f', ('time', 'nvars2d', 'nlat', 'nlon'))
        v_RMSZ = nc_sumfile.createVariable(
            "RMSZ", 'f', ('time', 'nvars', 'ens_size', 'nbin'))

        # Assign vars, var3d and var2d
        if verbose:
            print("VERBOSE: Assigning vars, var3d, and var2d .....")

        eq_all_var_names = []
        eq_d3_var_names = []
        eq_d2_var_names = []
        all_var_names = list(Var3d)
        all_var_names += Var2d
        l_eq = len(all_var_names)
        for i in range(l_eq):
            tt = list(all_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_all_var_names.append(tt)

        l_eq = len(Var3d)
        for i in range(l_eq):
            tt = list(Var3d[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d3_var_names.append(tt)

        l_eq = len(Var2d)
        for i in range(l_eq):
            tt = list(Var2d[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d2_var_names.append(tt)

        v_vars[:] = eq_all_var_names[:]
        v_var3d[:] = eq_d3_var_names[:]
        v_var2d[:] = eq_d2_var_names[:]

        # Time-invarient metadata
        if verbose:
            print("VERBOSE: Assigning time invariant metadata .....")
        vars_dict = first_file.variables
        lev_data = vars_dict["z_t"]
        v_lev[:] = lev_data[:]

        #end of rank 0

    #All:
    # Time-varient metadata
    if verbose:
        if me.get_rank() == 0:
            print("VERBOSE: Assigning time variant metadata .....")
    vars_dict = first_file.variables
    time_value = vars_dict['time']
    time_array = np.array([time_value])
    time_array = pyEnsLib.gather_npArray_pop(time_array, me, (me.get_size(), ))
    if me.get_rank() == 0:
        v_time[:] = time_array[:]

    #Assign zero values to first time slice of RMSZ and avg and stddev for 2d & 3d
    #in case of a calculation problem before finishing
    e_size = opts_dict['esize']
    b_size = opts_dict['nbin']
    z_ens_avg3d = np.zeros((len(Var3d), nlev, nlat, nlon), dtype=np.float32)
    z_ens_stddev3d = np.zeros((len(Var3d), nlev, nlat, nlon), dtype=np.float32)
    z_ens_avg2d = np.zeros((len(Var2d), nlat, nlon), dtype=np.float32)
    z_ens_stddev2d = np.zeros((len(Var2d), nlat, nlon), dtype=np.float32)
    z_RMSZ = np.zeros(((len(Var3d) + len(Var2d)), e_size, b_size),
                      dtype=np.float32)

    #rank 0 (put zero values in summary file)
    if me.get_rank() == 0:
        v_RMSZ[0, :, :, :] = z_RMSZ[:, :, :]
        v_ens_avg3d[0, :, :, :, :] = z_ens_avg3d[:, :, :, :]
        v_ens_stddev3d[0, :, :, :, :] = z_ens_stddev3d[:, :, :, :]
        v_ens_avg2d[0, :, :, :] = z_ens_avg2d[:, :, :]
        v_ens_stddev2d[0, :, :, :] = z_ens_stddev2d[:, :, :]

    #close file[0]
    first_file.close()

    # Calculate RMSZ scores
    if (verbose == True and me.get_rank() == 0):
        print("VERBOSE: Calculating RMSZ scores .....")

    zscore3d, zscore2d, ens_avg3d, ens_stddev3d, ens_avg2d, ens_stddev2d = pyEnsLib.calc_rmsz(
        full_in_files, Var3d, Var2d, opts_dict)

    if (verbose == True and me.get_rank() == 0):
        print("VERBOSE: Finished with RMSZ scores .....")

    # Collect from all processors
    if opts_dict['mpi_enable']:
        # Gather the 3d variable results from all processors to the master processor

        zmall = np.concatenate((zscore3d, zscore2d), axis=0)
        zmall = pyEnsLib.gather_npArray_pop(
            zmall, me,
            (me.get_size(), len(Var3d) + len(Var2d), len(full_in_files), nbin))

        ens_avg3d = pyEnsLib.gather_npArray_pop(
            ens_avg3d, me, (me.get_size(), len(Var3d), nlev, (nlat), nlon))
        ens_avg2d = pyEnsLib.gather_npArray_pop(ens_avg2d, me,
                                                (me.get_size(), len(Var2d),
                                                 (nlat), nlon))
        ens_stddev3d = pyEnsLib.gather_npArray_pop(
            ens_stddev3d, me, (me.get_size(), len(Var3d), nlev, (nlat), nlon))
        ens_stddev2d = pyEnsLib.gather_npArray_pop(ens_stddev2d, me,
                                                   (me.get_size(), len(Var2d),
                                                    (nlat), nlon))

    # Assign to summary file:
    if me.get_rank() == 0:

        v_RMSZ[:, :, :, :] = zmall[:, :, :, :]
        v_ens_avg3d[:, :, :, :, :] = ens_avg3d[:, :, :, :, :]
        v_ens_stddev3d[:, :, :, :, :] = ens_stddev3d[:, :, :, :, :]
        v_ens_avg2d[:, :, :, :] = ens_avg2d[:, :, :, :]
        v_ens_stddev2d[:, :, :, :] = ens_stddev2d[:, :, :, :]

        print("STATUS: PyEnsSumPop has completed.")

        nc_sumfile.close()