Exemplo n.º 1
0
    def jobCdft(self):
        self.rem.add('CDFT', 'True')
        self.rem.add('SCF_PRINT', 'True')
        self.cdft_arr = qc._unsupported_array("cdft")
        self.cdft_arr.add_line("1")
        self.cdft_arr.add_line("1  1  2  s")
        self.job_arr_list.append(self.cdft_arr)

        atoms = copy.copy(self.out.list_of_atoms)
        first_two = [atoms[0][0], atoms[1][0]]
        last_two = [atoms[-2][0], atoms[-1][0]]
        if first_two != ['O', 'O'] and last_two == ['O', 'O']:
            atoms.insert(0, atoms.pop())
            atoms.insert(0, atoms.pop())
        xyz = qc.cartesian(atom_list=atoms)
        self.mol = qc.mol_array(xyz)
        self.mol.charge(self.charge)
        self.mol.multiplicity(self.mult)
Exemplo n.º 2
0
myrem.exchange('hf')
myrem.basis('sto-3g')
myrem.scf_algorithm('rca_diis')
#myrem.max_rca_cycles('10')
#myrem.thresh_rca_switch('7')
myrem.scf_guess('sad')
myrem.scf_convergence('9')
myrem.thresh('14')
myrem.incfock('0')
myrem.incdft('0')
#myrem.max_scf_cycles('500')
#myrem.symmetry('false')
#myrem.sym_ignore('true')
myrem.mem_total('16000')
myrem.mem_static('4000')

# Add rem_array
myfile = qc.inputfile()
myfile.add(myrem)

# Add geometry array
mygeo = qc.mol_array(aa.aimd.geometries[0])
myfile.add(mygeo)

# Finally, create each inputfile and write it to disk
for i, k in enumerate(aa.aimd.geometries):
    mygeo = qc.mol_array(k)
    myfile.add(mygeo)
    filename = str(i) + ".inp"
    myfile.write(filename)
Exemplo n.º 3
0
    def __init__(self, infile,charge=0,mult=1,jobtype='opt',basis='6-31+g*',method='tpssh', \
                 geom_read=False, nametrunc=True, bond_cons = None, infodump=False):

        self.jobdict = {'sp':self.jobSp, 'opt':self.jobOpt, 'fq':self.jobFreq, 'sopt':self.jobSopt, \
                        'cube':self.jobCube, 'constr':self.jobConstrainedOpt, 'fixbonds':self.jobFixedBondOpt, \
                        'cdft':self.jobCdft, \
                       }

        #        self.bond_cons = [[2,5,con_N_x],[3,4,con_N_x],[2,3,con_N_y],[4,5,con_N_y]]
        self.bond_cons = bond_cons
        self.info_dump = infodump

        #        self.free_atom = ['Fe','O']
        self.free_atom = ['O']
        self.job_arr_list = []

        self.charge = charge
        self.mult = mult
        self.jobtype = jobtype
        self.pcm_arr = None
        self.sol_arr = None
        self.plot_arr = None

        #if nametrunc == True: self.name = (infile.split('.')[0]).split('_')[0]
        #else: self.name = infile.split('.')[0]

        splinfile = infile.split('/')
        if len(splinfile) == 1:
            self.path = ''
        else:
            self.path = '/'.join(splinfile[:-1]) + '/'

        if nametrunc == True:
            self.name = (splinfile[-1].split('.')[0]).split('_')[0]
        else:
            self.name = (splinfile[-1].split('.'))[0]

        print(splinfile)
        print(splinfile[-1])
        print(self.name)

        print(self.charge)
        print(self.mult)
        self.out = qc.read(infile)
        self.rem = qc.rem_array()
        self.rem.basis(basis)
        self.rem.method(method)
        self.rem.thresh("14")
        self.rem.add('mem_total', '4096')
        self.rem.add('mem_static', '256')
        self.rem.add('max_scf_cycles', '500')
        #        self.rem.add('scf_convergence','7')
        #        self.rem.add('scf_algorithm','diis_gdm')

        ##For these metal-centered systems
        self.rem.add('unrestricted', 'true')
        #        if self.mult == '1': ## I didn't find that this worked at all for any of the metal-macrocycle systems
        #            self.rem.add("scf_guess_mix", "1")
        #            self.rem.add("scf_guess", "gwh")

        if geom_read:
            self.mol = qc.mol_array()
            self.mol.geometry("read")
            self.rem.add('scf_guess', 'read')
        else:
            if infile.split('.')[-1] == 'out':
                #                self.mol=qc.mol_array(self.out.opt.geometries[-1])
                self.mol = qc.mol_array(self.out.general.final_geometry)
#                self.mol = qc.mol_array(self.out.general.initial_geometry)
            else:
                xyz = qc.cartesian(atom_list=self.out.list_of_atoms)
                self.mol = qc.mol_array(xyz)
        self.mol.charge(charge)
        self.mol.multiplicity(mult)
Exemplo n.º 4
0
import pyQChem as qc

#generate rem array, cartesian object, mol array, and job via standard procedure (see input demos)
rem = qc.rem_array()
rem.basis("sto-3g")
rem.jobtype("opt")
xyz = qc.cartesian()
xyz.add_atom()
xyz.add_atom("H", "0", "0", ".74")
molec = qc.mol_array(xyz)
job = qc.inputfile()
job.add(rem)
job.add(molec)

#run job with name "h2" making h2.in h2.sh, and h2.out
job.run(name="h2")

#read in output
out = qc.read("h2.out")
out.opt.info()

#let's approximate how much this has changed

#grab first geometry
start = out.opt.geometries[0]

#grab last geometry
end = out.opt.geometries[-1]

#Print statistics for geometric distortions
print "\n\nApproximate change between starting and ending geometries by two metrics:\n"
Exemplo n.º 5
0
import pyQChem as qc
import os

#make a generic rem array
rem = qc.rem_array()
rem.basis("sto-3g")
rem.exchange("hf")

#make a list of jobs
job_list = []

#for all xyzs in a database, create and append the job to the list
for i in os.popen("ls ../../databases/a24/*.xyz").read().splitlines():

    #make the jobs
    job = qc.inputfile()

    #give job a name
    job.runinfo.name = i.split('/')[-1].replace(".xyz", "")

    #read the xyz
    xyz = qc.read(i)

    #append the molecule and rem array
    job.add(qc.mol_array(xyz))
    job.add(rem)
    job_list.append(job)

# run all jobs in list using 12 workers
qc.queue(job_list, num_workers=12)
Exemplo n.º 6
0
import pyQChem as qc
import os

#make a generic rem array
rem=qc.rem_array()
rem.basis("sto-3g")
rem.exchange("hf")

#make a list of jobs
job_list=[]

#for all xyzs in a database, create and append the job to the list
for i in os.popen("ls ../../databases/a24/*.xyz").read().splitlines():

    #make the jobs
    job=qc.inputfile()

    #give job a name
    job.runinfo.name=i.split('/')[-1].replace(".xyz","")

    #read the xyz
    xyz=qc.read(i)
   
    #append the molecule and rem array
    job.add(qc.mol_array(xyz))
    job.add(rem)
    job_list.append(job)

# run all jobs in list using 12 workers
qc.queue(job_list,num_workers=12)
Exemplo n.º 7
0
rem1.scf_convergence("10")
from copy import deepcopy
rem2=deepcopy(rem1)
rem2.scf_guess("fragmo")

#make a rem_frgm array
rem_frgm=pq.rem_frgm_array()
rem_frgm.thresh("7")
rem_frgm.scf_convergence("3")

#make objects for holding the molecular geometries
xyz=pq.read("4water.xyz")
frag=pq.fragment(atom_list=xyz.list_of_atoms)

#make molecule array from cartesian object
mol1=pq.mol_array(xyz)
mol2=pq.mol_array(frag)

#make input object and write to disk
job1=pq.inputfile()
job1.add(rem1)
job1.add(mol1)

job2=pq.inputfile()
job2.add(rem2)
job2.rem.scf_guess("fragmo")
job2.add(rem_frgm)
job2.add(mol2)

job=pq.multifile()
job.add(job1)
Exemplo n.º 8
0
import pyQChem as qc

#generate rem array, cartesian object, mol array, and job via standard procedure (see input demos)
rem=qc.rem_array()
rem.basis("6-31g")
rem.jobtype("sp")
rem.method("adc(2)")
rem.ee_singlets("[2,0,0,0,0,2,0,0]")
xyz=qc.cartesian()
xyz.add_atom()
xyz.add_atom("H","0","0",".74")
molec=qc.mol_array(xyz)
job=qc.inputfile()
job.add(rem)
job.add(molec)

#run job with name "h2" making h2.in h2.sh, and h2.out
job.run(name="h2")

#read in output
out=qc.read("h2.out")
out.adc.info()

#let's compute the excitation energies between the excited states
print "\nExcitation energies between excited states:"
for i in range(0,len(out.adc.list_of_excited_states)-1):
    es1 = out.adc.list_of_excited_states[i]
    for j in range(i + 1,len(out.adc.list_of_excited_states)):
        es2 = out.adc.list_of_excited_states[j]
        print("{0:10s} -> {1:10s}: {2:12.6f}".format(es1.term_symbol, es2.term_symbol,es2.energy - es1.energy))        
Exemplo n.º 9
0
#
import pyQChem as qc


#make the rem array and fill it
rem=qc.rem_array()
rem.basis("sto-3g")
rem.jobtype("opt")

#make the cartesian object and fill it
xyz=qc.cartesian()
xyz.add_atom() #defaults to H at origin
xyz.add_atom("H","0","0",".74")

#make molecule array from cartesian object
molec=qc.mol_array(xyz)

#assemble the job from the arrays
job1=qc.inputfile()
job1.add(rem)
job1.add(molec)

#write it to file
job1.write("h2.in")

#make another rem to do the second job
rem2=qc.deepcopy(rem)
rem2.jobtype("freq")

#define the  molecule array as "READ" so we grab the right geometry
molec2=qc.mol_array()