Exemplo n.º 1
0
def gamma(flag, S, K, t, r, sigma):
    """Return Black-Scholes gamma of an option.

    :param S: underlying asset price
    :type S: float
    :param K: strike price
    :type K: float
    :param sigma: annualized standard deviation, or volatility
    :type sigma: float
    :param t: time to expiration in years
    :type t: float
    :param r: risk-free interest rate
    :type r: float
    :param flag: 'c' or 'p' for call or put.
    :type flag: str

    Example 17.4, page 364, Hull:

    >>> S = 49
    >>> K = 50
    >>> r = .05
    >>> t = 0.3846
    >>> sigma = 0.2
    >>> flag = 'c'
    >>> gamma_calc = gamma(flag, S, K, t, r, sigma)
    >>> # 0.0655453772525
    >>> gamma_text_book = 0.066
    >>> abs(gamma_calc - gamma_text_book) < .001
    True
    """

    d_1 = d1(S, K, t, r, sigma)
    v_squared = sigma**2
    return pdf(d_1) / (S * sigma * numpy.sqrt(t))
Exemplo n.º 2
0
def delta(flag, S, K, t, r, sigma):
    """Return Black-Scholes delta of an option.

    :param S: underlying asset price
    :type S: float
    :param K: strike price
    :type K: float
    :param sigma: annualized standard deviation, or volatility
    :type sigma: float
    :param t: time to expiration in years
    :type t: float
    :param r: risk-free interest rate
    :type r: float
    :param flag: 'c' or 'p' for call or put.
    :type flag: str

    Example 17.1, page 355, Hull:

    >>> S = 49
    >>> K = 50
    >>> r = .05
    >>> t = 0.3846
    >>> sigma = 0.2
    >>> flag = 'c'
    >>> delta_calc = delta(flag, S, K, t, r, sigma)
    >>> # 0.521601633972
    >>> delta_text_book = 0.522
    >>> abs(delta_calc - delta_text_book) < .01
    True
    """

    d_1 = d1(S, K, t, r, sigma)

    if flag == 'p':
        return N(d_1) - 1.0
    else:
        return N(d_1)
Exemplo n.º 3
0
def vega(flag, S, K, t, r, sigma):
    """Return Black-Scholes vega of an option.

    :param S: underlying asset price
    :type S: float
    :param K: strike price
    :type K: float
    :param sigma: annualized standard deviation, or volatility
    :type sigma: float
    :param t: time to expiration in years
    :type t: float
    :param r: risk-free interest rate
    :type r: float
    :param flag: 'c' or 'p' for call or put.
    :type flag: str

    The text book analytical formula does not multiply by .01,
    but in practice vega is defined as the change in price
    for each 1 percent change in IV, hence we multiply by 0.01.

    Example 17.6, page 367, Hull:

    >>> S = 49
    >>> K = 50
    >>> r = .05
    >>> t = 0.3846
    >>> sigma = 0.2
    >>> flag = 'c'
    >>> vega_calc = vega(flag, S, K, t, r, sigma)
    >>> # 0.121052427542
    >>> vega_text_book = 0.121
    >>> abs(vega_calc - vega_text_book) < .01
    True
    """

    d_1 = d1(S, K, t, r, sigma)
    return S * pdf(d_1) * numpy.sqrt(t) * 0.01
Exemplo n.º 4
0
def theta(flag, S, K, t, r, sigma):
    """Return Black-Scholes theta of an option.

    :param S: underlying asset price
    :type S: float
    :param K: strike price
    :type K: float
    :param sigma: annualized standard deviation, or volatility
    :type sigma: float
    :param t: time to expiration in years
    :type t: float
    :param r: risk-free interest rate
    :type r: float
    :param flag: 'c' or 'p' for call or put.
    :type flag: str

    The text book analytical formula does not divide by 365,
    but in practice theta is defined as the change in price
    for each day change in t, hence we divide by 365.

    Example 17.2, page 359, Hull:

    >>> S = 49
    >>> K = 50
    >>> r = .05
    >>> t = 0.3846
    >>> sigma = 0.2
    >>> flag = 'c'
    >>> annual_theta_calc = theta(flag, S, K, t, r, sigma) * 365
    >>> # -4.30538996455
    >>> annual_theta_text_book = -4.31
    >>> abs(annual_theta_calc - annual_theta_text_book) < .01
    True

    Using the same inputs with a put.
    >>> S = 49
    >>> K = 50
    >>> r = .05
    >>> t = 0.3846
    >>> sigma = 0.2
    >>> flag = 'p'
    >>> annual_theta_calc = theta(flag, S, K, t, r, sigma) * 365
    >>> # -1.8530056722
    >>> annual_theta_reference = -1.8530056722
    >>> abs(annual_theta_calc - annual_theta_reference) < .000001
    True
    """

    two_sqrt_t = 2 * numpy.sqrt(t)

    D1 = d1(S, K, t, r, sigma)
    D2 = d2(S, K, t, r, sigma)

    first_term = (-S * pdf(D1) * sigma) / two_sqrt_t

    if flag == 'c':
        second_term = r * K * numpy.exp(-r * t) * N(D2)
        return (first_term - second_term) / 365.0

    if flag == 'p':
        second_term = r * K * numpy.exp(-r * t) * N(-D2)
        return (first_term + second_term) / 365.0