Exemplo n.º 1
0
def abc_setup():
    """
    Create abc model
    """

    abc_prior_dict = {
        's': RV("uniform", *simtools.PARAMS['abc_limits_shape']),
        'c': RV("uniform", *simtools.PARAMS['abc_limits_center']),
        'w': RV("uniform", *simtools.PARAMS['abc_limits_width']),
        'n': RV("uniform", *simtools.PARAMS['abc_limits_noise_sigma']),
        'm': RV("uniform", *simtools.PARAMS['abc_limits_normal_maximum_rate']),
        'r': RV("uniform", *simtools.PARAMS['abc_limits_maximum_rate_ratio']),
    }

    abc_priors = Distribution(abc_prior_dict)

    abc = ABCSMC(abc_model,
                 abc_priors,
                 abc_distance,
                 population_size=AdaptivePopulationSize(
                     simtools.PARAMS['abc_initial_population_size'],
                     mean_cv=simtools.PARAMS['abc_population_size_epsilon'],
                     max_population_size=simtools.
                     PARAMS['abc_population_size_maximum']),
                 sampler=MulticoreEvalParallelSampler(
                     simtools.PARAMS['abc_parallel_simulations']))

    return abc
def test_stop_early(db_path):
    mc_sampler = MulticoreEvalParallelSampler(check_max_eval=True)
    sc_sampler = SingleCoreSampler(check_max_eval=True)
    for sampler in [mc_sampler, sc_sampler]:
        abc = ABCSMC(model, Distribution(par=st.uniform(0, 10)), dist, 10,
                     sampler=sampler)
        abc.new(db_path, {"par": .5})
        history = abc.run(
            max_nr_populations=8, min_acceptance_rate=set_acc_rate)
        df = history.get_all_populations()
        df["acceptance_rate"] = df["particles"] / df["samples"]
        assert df["acceptance_rate"].iloc[-1] >= set_acc_rate
Exemplo n.º 3
0
def abc_setup(birthrate_groups):
    """
    create abc model
    parameters are stored in the global simtools.PARAMS dict
    """

    for curve_resolution in simtools.PARAMS['abc_params']['resolution_limits']:
        assert curve_resolution > 0 and curve_resolution <= 9

    abc_priors = []
    for resolution_limit in range(
            simtools.PARAMS['abc_params']['resolution_limits'][0],
            simtools.PARAMS['abc_params']['resolution_limits'][1] + 1):
        abc_prior_dict = {}
        for i in range(resolution_limit):
            abc_prior_dict['r' + str(i)] = \
                RV("uniform", simtools.PARAMS['abc_params']['rate_limits'][0],
                abs(simtools.PARAMS['abc_params']['rate_limits'][1] - \
                simtools.PARAMS['abc_params']['rate_limits'][0]))
        abc_priors.append(
            Distribution(birthrate=copy.deepcopy(abc_prior_dict)))

    print('priors', abc_priors)

    #abc = ABCSMC([abc_model for __ in abc_priors], abc_priors, abc_distance,
    #             population_size=AdaptivePopulationSize(
    #                 int(simtools.PARAMS['abc_params']['starting_population_size']),
    #                 0.15,
    #                 max_population_size=int(simtools.PARAMS['abc_params']['max_population_size']),
    #                 min_population_size=int(simtools.PARAMS['abc_params']['min_population_size'])),
    #             sampler=MulticoreEvalParallelSampler(
    #                 simtools.PARAMS['abc_params']['parallel_simulations']))
    abc = ABCSMC(
        [abc_model for __ in abc_priors],
        abc_priors,
        abc_distance,
        population_size=ConstantPopulationSize(
            int(simtools.PARAMS['abc_params']['starting_population_size'])),
        sampler=MulticoreEvalParallelSampler(
            simtools.PARAMS['abc_params']['parallel_simulations']))

    return abc
Exemplo n.º 4
0
def test_stop_early(db_path):
    """Test early stopping inside a generation."""
    mc_sampler = MulticoreEvalParallelSampler(check_max_eval=True)
    sc_sampler = SingleCoreSampler(check_max_eval=True)
    for sampler in [mc_sampler, sc_sampler]:
        abc = ABCSMC(model,
                     Distribution(par=st.uniform(0, 10)),
                     dist,
                     pop_size,
                     sampler=sampler)
        abc.new(db_path, {"par": .5})
        history = abc.run(min_acceptance_rate=set_acc_rate)
        df = history.get_all_populations()

        # offset with n_procs as more processes can have run at termination
        n_procs = sampler.n_procs if hasattr(sampler, 'n_procs') else 1
        df["corrected_acceptance_rate"] = \
            df["particles"] / (df["samples"] - (n_procs-1))

        assert df["corrected_acceptance_rate"].iloc[-1] >= set_acc_rate
Exemplo n.º 5
0
from scipy import stats
from tempfile import gettempdir
from pyabc import MedianEpsilon, \
    LocalTransition, Distribution, RV, ABCSMC, sge, \
    AdaptivePNormDistance, PNormDistance, UniformAcceptor
from pyabc.sampler import MulticoreEvalParallelSampler
import time

# Set version number each iteration
temp_folder = "jitAdaptivePNormDistance_2300_t=1_nonunifacc_eps09"
version_number = temp_folder + str(time.time())

# SMCABC parameters:
SMCABC_distance = AdaptivePNormDistance(p=2)
SMCABC_population_size = 30
SMCABC_sampler = MulticoreEvalParallelSampler(40)
SMCABC_transitions = LocalTransition(k_fraction=.5)
SMCABC_eps = MedianEpsilon(500, median_multiplier=0.9)
smcabc_minimum_epsilon = 0.001
smcabc_max_nr_populations = 4
smcabc_min_acceptance_rate = SMCABC_population_size / 25000

# Fixed Parameters
div_path = 1000
L = 2300  # time horizon
p_0 = 238.745 * div_path  # initial price
MCSteps = 10**5  # MC steps to generate variance
N_A = 125  # no. market makers = no. liquidity providers

# # True price trajectory
# delta_true = 0.0250       # limit order cancellation rate
Exemplo n.º 6
0
    'initial_lesion_density', 'sensitive_lesion_proportion',
    'starting_mutant_proportion', 'k'
]
priors = {}
for p, b in zip(param_order, BOUNDS):
    priors[p] = RV("uniform", b[0], b[1] - b[0])

priors = Distribution(priors)

NUM_CORES = 3
POPULATION_SIZE = 10000
DB_PATH = "full_model_abc.db"

###### ABC ######
distance = PNormDistance(p=1)
sampler = MulticoreEvalParallelSampler(n_procs=NUM_CORES)

abc = ABCSMC(run_model, priors, distance, population_size=POPULATION_SIZE)

db_path = ("sqlite:///" + DB_PATH)

abc.new(db_path, {'distance': 0})
history = abc.run(minimum_epsilon=0.001, max_nr_populations=25)

# The database is stored and can be reloaded if needed - see pyabc documentation
# Here just print the median and 95% credible intervals.
import pyabc.visualization.credible as credible


def get_estimate_and_CI_for_param(param, df, w, confidence=0.95):
    vals = np.array(df[param])
Exemplo n.º 7
0
def PicklingMulticoreEvalParallelSampler():
    return MulticoreEvalParallelSampler(pickle=True)
Exemplo n.º 8
0
LAMBDA0_TRUE = 100  # initial order placement depth
C_LAMBDA_TRUE = 10  # limit order placement depth coefficient
DELTA_S_TRUE = 0.0010  # mean reversion strength parameter

# prior range
DELTA_MIN, DELTA_MAX = 0, 0.05
MU_MIN, MU_MAX = 0, 0.05
ALPHA_MIN, ALPHA_MAX = 0.05, 0.5
LAMBDA0_MIN, LAMBDA0_MAX = 50, 300
C_LAMBDA_MIN, C_LAMBDA_MAX = 1, 50
DELTAS_MIN, DELTAS_MAX = 0, 0.005

# Fixed Parameters
PRICE_PATH_DIVIDER = 100
TIME_HORIZON = 3200  # time horizon
P_0 = 238.745 * PRICE_PATH_DIVIDER  # initial price
MC_STEPS = 10**5  # MC steps to generate variance
N_A = 125  # no. market makers = no. liquidity providers

# SMCABC parameters:
SMCABC_DISTANCE = AdaptivePNormDistance(
    p=2, scale_function=pyabc.distance.root_mean_square_deviation)
SMCABC_POPULATION_SIZE = 30
SMCABC_SAMPLER = MulticoreEvalParallelSampler(ncores)
SMCABC_TRANSITIONS = MultivariateNormalTransition()
SMCABC_EPS = MedianEpsilon(0.01)
SMCABC_ACCEPTOR = UniformAcceptor(use_complete_history=True)
smcabc_minimum_epsilon = 0.0001
smcabc_max_nr_populations = 6
smcabc_min_acceptance_rate = SMCABC_POPULATION_SIZE / 25000
Exemplo n.º 9
0
    # 210113: using testODE results as "data"
    result = outbreak(tstRunParam)
    noisedResult = addNoise(result, 20)

    noiseFile = dataDir + 'testODE-noise.csv'
    rptResult(noisedResult, noiseFile, addDate=True)

    ndataDF = pd.DataFrame(noisedResult)
    ndataDatedDF = addDateSeries(ndataDF)

    # Use default MulticoreEvalParallelSampler sampler
    # pool = ThreadPoolExecutor(max_workers=nworkers)
    # sampler = ConcurrentFutureSampler(pool)

    sampler = MulticoreEvalParallelSampler(ncore)

    bnds0 = dict(n_infectious=(10, 1000), beta=(1e-3, 1e-1))

    doPlots = True

    exptList = []
    exptIdx = 0
    print('main: TESTING one experiment 3_3')
    for maxPop in [3]:  #[3,5,10,20,40]:
        for maxNR in [3]:  # [3,5,10,20,40]:
            expt = {'maxABCPop': maxPop, 'maxNRPop': maxNR, 'bounds': bnds0}
            expt['idx'] = exptIdx
            exptIdx += 1
            expt['name'] = f'{maxPop:02}_{maxNR:02}'
            exptList.append(expt)
Exemplo n.º 10
0
def calibrate_ABC(abcDB):
    '''calibrate parameters using pyABC library
	'''

    # print('TESTING: ncore=4 for hancock')
    ncore = n_workers  # 4
    # sampler = MulticoreParticleParallelSampler(ncore) # DYN sampling strategy
    # abcSampler = 'part//'
    sampler = MulticoreEvalParallelSampler(
        ncore, check_max_eval=True)  # STAT sampling strategy
    abcSampler = 'eval//'
    maxABCPop = ncore
    maxNGen = 50
    maxABCWallTime = datetime.timedelta(minutes=10)
    MinABCAccept = 0.2
    MinABCEps = 100
    # print('TESTING: minEps=200')
    # MinABCEps = 100
    # NB: ASSUME > MinABCAccept are accepted each gen
    # print('TESTING: limit abc evals=1000')
    # maxABCEval = 1000 # maxNGen * ncore / MinABCAccept
    maxABCEval = maxNGen * ncore / MinABCAccept / 2

    print(
        f'calibrate_ABC: {abcSampler} maxNGen={maxNGen} maxABCEval={maxABCEval}  maxABCWallTime={maxABCWallTime} MinABCAccept={MinABCAccept} MinABCEps={MinABCEps}'
    )
    bounds, pkeys = get_bounds()
    print(f'calibrate_ABC:  bounds={bounds}')

    # NB: pyabc.Distribution inherits from scipy.stats the convention of the two argument being
    #	 lowerBound and RANGE (vs. lower bound, upper bound)
    iiRange = bounds['ub'][0] - bounds['lb'][0]
    betaRange = bounds['ub'][1] - bounds['lb'][1]
    if UseTestRate == 'srch':
        testRateRange = bounds['ub'][1] - bounds['lb'][2]

    cvPrior = pyabc.Distribution(pop_infected=pyabc.RV("uniform",
                                                       bounds['lb'][0],
                                                       iiRange),
                                 beta=pyabc.RV("uniform", bounds['lb'][1],
                                               betaRange))

    # NB: treat cvPrior just like a dict even tho its a ParameterStructure
    if UseTestRate == 'srch':
        cvPrior['test_rate'] = pyabc.RV("uniform", bounds['lb'][2],
                                        testRateRange)

    abc = pyabc.ABCSMC(
        cvModel,
        cvPrior,
        None,  # 210222: Use default PNorm()
        # population_size=AdaptivePopulationSize(ncore, 0.15,max_population_size=4*ncore)
        population_size=maxABCPop,
        sampler=sampler)

    # No observed mismatch!
    history = abc.new(abcDB, {"mismatch": 0})

    runID = history.id

    print(f'calibrate_ABC: runID={runID}')

    start_time = time()

    history = abc.run(min_acceptance_rate=MinABCAccept,
                      minimum_epsilon=MinABCEps,
                      max_total_nr_simulations=maxABCEval,
                      max_walltime=maxABCWallTime,
                      max_nr_populations=50)

    print(f"calibrate_ABC: runID={runID} ABC time {time() - start_time:.2f}s")

    return history