Exemplo n.º 1
0
    def test_discrete_chebyshev(self):
        num_coef = 5
        nmasses = 10

        xk = np.array(range(nmasses), dtype='float')
        pk = np.ones(nmasses) / nmasses

        ab_lanczos = lanczos(xk, pk, num_coef)
        ab_stieltjes = stieltjes(xk, pk, num_coef)

        ab_exact = discrete_chebyshev_recurrence(num_coef, nmasses)

        # ab_lanczos[-1, 0] is a dummy entry so set to exact so
        # comparison will pass if all other entries are correct
        ab_lanczos[-1, 0] = ab_exact[-1, 0]

        assert np.allclose(ab_lanczos, ab_exact)
        assert np.allclose(ab_stieltjes, ab_exact)

        from pyapprox.univariate_quadrature import gauss_quadrature
        x, w = gauss_quadrature(ab_lanczos, num_coef)
        moments = np.array([(x**ii).dot(w) for ii in range(num_coef)])
        true_moments = np.array([(xk**ii).dot(pk) for ii in range(num_coef)])
        assert np.allclose(moments, true_moments)
        p = evaluate_orthonormal_polynomial_1d(x, num_coef - 1, ab_lanczos)
        assert np.allclose((p.T * w).dot(p), np.eye(num_coef))
        p = evaluate_orthonormal_polynomial_1d(xk, num_coef - 1, ab_lanczos)
        assert np.allclose((p.T * pk).dot(p), np.eye(num_coef))
Exemplo n.º 2
0
    def test_predictor_corrector_known_scipy_pdf(self):
        nterms = 5
        quad_options = {
            'nquad_samples': 10,
            'atol': 1e-8,
            'rtol': 1e-8,
            'max_steps': 10000,
            'verbose': 1
        }

        rv = stats.beta(1, 1, -1, 2)
        ab = predictor_corrector_known_scipy_pdf(nterms, rv, quad_options)
        true_ab = jacobi_recurrence(nterms, 0, 0)
        assert np.allclose(ab, true_ab)

        rv = stats.norm()
        ab = predictor_corrector_known_scipy_pdf(nterms, rv, quad_options)
        true_ab = hermite_recurrence(nterms)
        assert np.allclose(ab, true_ab)

        # lognormal is a very hard test
        rv = stats.lognorm(1)

        # mean, std = 1e4, 7.5e3
        # beta = std*np.sqrt(6)/np.pi
        # mu = mean - beta*np.euler_gamma
        # rv = stats.gumbel_r(loc=mu, scale=beta)

        ab = predictor_corrector_known_scipy_pdf(nterms, rv, quad_options)

        def integrand(x):
            p = evaluate_orthonormal_polynomial_1d(x, nterms - 1, ab)
            G = np.empty((x.shape[0], nterms**2))
            kk = 0
            for ii in range(nterms):
                for jj in range(nterms):
                    G[:, kk] = p[:, ii] * p[:, jj]
                    kk += 1
            return G * rv.pdf(x)[:, None]

        lb, ub = rv.interval(1)
        xx, __ = gauss_quadrature(ab, nterms)
        interval_size = xx.max() - xx.min()
        quad_opts = quad_options.copy()
        del quad_opts['nquad_samples']
        res = integrate_using_univariate_gauss_legendre_quadrature_unbounded(
            integrand,
            lb,
            ub,
            quad_options['nquad_samples'],
            interval_size=interval_size,
            **quad_opts)
        res = np.reshape(res, (nterms, nterms), order='C')
        print(np.absolute(res - np.eye(nterms)).max())
        assert np.absolute(res - np.eye(nterms)).max() < 2e-4
Exemplo n.º 3
0
 def test_float_rv_discrete(self):
     num_coef,nmasses = 5,10
     #works for both lanczos and chebyshev algorithms
     #xk   = np.geomspace(1,512,num=nmasses)
     #pk   = np.ones(nmasses)/nmasses
     
     #works only for chebyshev algorithms
     pk  = np.geomspace(1,512,num=nmasses)
     pk /= pk.sum()
     xk  = np.arange(0,nmasses)
     
     #ab  = lanczos(xk,pk,num_coef)
     ab  = modified_chebyshev_orthonormal(
         num_coef,[xk,pk],probability=True)
     
     from pyapprox.univariate_quadrature import gauss_quadrature
     x,w = gauss_quadrature(ab,num_coef)
     moments = np.array([(x**ii).dot(w) for ii in range(num_coef)])
     true_moments = np.array([(xk**ii).dot(pk)for ii in range(num_coef)])
     assert np.allclose(moments,true_moments),(moments,true_moments)
     p = evaluate_orthonormal_polynomial_1d(x, num_coef-1, ab)
     assert np.allclose((p.T*w).dot(p),np.eye(num_coef))
     p = evaluate_orthonormal_polynomial_1d(xk, num_coef-1, ab)
     assert np.allclose((p.T*pk).dot(p),np.eye(num_coef))
Exemplo n.º 4
0
    def test_krawtchouk(self):
        num_coef=6
        ntrials  = 10
        p        = 0.5

        xk = np.array(range(ntrials+1),dtype='float')
        pk = binom.pmf(xk, ntrials, p)
        
        ab_lanzcos   = lanczos(xk,pk,num_coef)
        ab_stieltjes = stieltjes(xk,pk,num_coef)

        ab_exact = krawtchouk_recurrence(num_coef, ntrials, p)
        assert np.allclose(ab_lanzcos,ab_exact)
        assert np.allclose(ab_stieltjes,ab_exact)

        from pyapprox.univariate_quadrature import gauss_quadrature
        x,w = gauss_quadrature(ab_lanzcos,num_coef)
        moments = np.array([(x**ii).dot(w) for ii in range(num_coef)])
        true_moments = np.array([(xk**ii).dot(pk)for ii in range(num_coef)])
        assert np.allclose(moments,true_moments)
        p = evaluate_orthonormal_polynomial_1d(x, num_coef-1, ab_lanzcos)
        assert np.allclose((p.T*w).dot(p),np.eye(num_coef))
        p = evaluate_orthonormal_polynomial_1d(xk, num_coef-1, ab_lanzcos)
        assert np.allclose((p.T*pk).dot(p),np.eye(num_coef))