Exemplo n.º 1
0
def main():
    """
    Read a selected APR from file and apply Richardson-Lucy deconvolution
    """

    # Get input APR file path from gui
    io_int = pyapr.filegui.InteractiveIO()
    fpath_apr = io_int.get_apr_file_name()

    # Instantiate APR and particles objects
    apr = pyapr.APR()
    parts = pyapr.ShortParticles()
    # parts = pyapr.FloatParticles()

    # Read from APR file
    pyapr.io.read(fpath_apr, apr, parts)

    # Copy particles to float
    fparts = pyapr.FloatParticles()
    fparts.copy(parts)

    # Add a small offset to the particle values to avoid division by 0
    offset = 1e-5 * fparts.max()
    fparts += offset

    # Display the input image
    pyapr.viewer.parts_viewer(apr, fparts)

    # Specify the PSF and number of iterations
    psf = pyapr.numerics.filter.get_gaussian_stencil(size=5,
                                                     sigma=1,
                                                     ndims=3,
                                                     normalize=True)
    niter = 20

    # Perform richardson-lucy deconvolution
    output = pyapr.FloatParticles()
    pyapr.numerics.richardson_lucy(apr,
                                   fparts,
                                   output,
                                   psf,
                                   niter,
                                   use_stencil_downsample=True,
                                   normalize_stencil=True,
                                   resume=False)

    # Alternative using total variation regularization:
    # reg_factor = 1e-2
    # pyapr.numerics.richardson_lucy_tv(apr, fparts, output, psf, niter, reg_factor, use_stencil_downsample=True,
    #                                   normalize_stencil=True, resume=False)

    # Alternatively, if PyLibAPR is built with CUDA enabled and psf is of size (3, 3, 3) or (5, 5, 5)
    # pyapr.numerics.richardson_lucy_cuda(apr, fparts, output, psf, niter, use_stencil_downsample=True,
    #                                     normalize_stencil=True, resume=False)

    # Display the result
    pyapr.viewer.parts_viewer(apr, output)
Exemplo n.º 2
0
    def setUp(self):

        self.numel = 113

        self.float1 = pyapr.FloatParticles(self.numel)
        self.float2 = pyapr.FloatParticles(self.numel)
        self.short1 = pyapr.ShortParticles(self.numel)
        self.short2 = pyapr.ShortParticles(self.numel)

        self.float1.fill(1)
        self.float2.fill(1 / 3)
        self.short1.fill(2)
        self.short2.fill(3)

        self.eps = 1e-6
Exemplo n.º 3
0
def main():
    """
    This demo showcases some of the available numerics functionality on a selected APR
    """

    io_int = pyapr.filegui.InteractiveIO()
    fpath_apr = io_int.get_apr_file_name()      # get APR file path from gui

    # Instantiate APR and particle objects
    apr = pyapr.APR()
    parts = pyapr.ShortParticles()              # input particles can be float32 or uint16
    # parts = pyapr.FloatParticles()

    # Read from APR file
    pyapr.io.read(fpath_apr, apr, parts)

    output = pyapr.FloatParticles()

    # Compute gradient along a dimension (Sobel filter). dimension can be 0, 1 or 2
    pyapr.numerics.gradient(apr, parts, output, dimension=0, delta=1.0, sobel=True)
    pyapr.viewer.parts_viewer(apr, output)   # Display the result

    # Compute gradient magnitude (central finite differences)
    pyapr.numerics.gradient_magnitude(apr, parts, output, deltas=(1.0, 1.0, 1.0), sobel=False)
    pyapr.viewer.parts_viewer(apr, output)  # Display the result

    # Compute local standard deviation around each particle
    pyapr.numerics.local_std(apr, parts, output, size=(5, 5, 5))
    pyapr.viewer.parts_viewer(apr, output)  # Display the result
Exemplo n.º 4
0
def reconstruct_smooth(apr: pyapr.APR,
                       parts: (pyapr.ShortParticles, pyapr.LongParticles, pyapr.FloatParticles),
                       tree_parts: (None, pyapr.ShortParticles, pyapr.LongParticles, pyapr.FloatParticles) = None,
                       patch: (None, pyapr.ReconPatch) = None,
                       out_arr: (None, np.ndarray) = None):
    """
    Reconstruct pixel values by smooth interpolation

    Parameters
    ----------
    apr : pyapr.APR
        input APR data structure
    parts : pyapr.FloatParticles or pyapr.ShortParticles
        input particle intensities
    tree_parts: None, pyapr.FloatParticles or pyapr.ShortParticles
        (optional) interior tree particle values used to construct at a lower resolution (if patch.level_delta < 0).
        If None, they are computed by average downsampling as necessary. (default: None)
    patch: pyapr.ReconPatch
        (optional) specify the image region and resolution of the reconstruction. If None, reconstruct the full image volume
        at original pixel resolution. (default: None)
    out_arr: None, np.ndarray
        (optional) preallocated array for the result. If the size is not correct (according to APR dimensions or patch limits),
        memory for the output is reallocated. (default: None)
    Returns
    -------
    out_arr : numpy.ndarray
        the reconstructed pixel values
    """

    if isinstance(parts, pyapr.FloatParticles):
        _dtype = np.float32
    elif isinstance(parts, pyapr.LongParticles):
        _dtype = np.uint64
    elif isinstance(parts, pyapr.ShortParticles):
        _dtype = np.uint16
    else:
        raise ValueError('parts type not recognized')

    if patch is not None:
        if not patch.check_limits(apr):
            return None

        if out_arr is None or out_arr.size != patch.size():
            out_arr = np.zeros(shape=(patch.z_end-patch.z_begin, patch.x_end-patch.x_begin, patch.y_end-patch.y_begin),
                               dtype=_dtype)

        if tree_parts is None:
            tree_parts = pyapr.FloatParticles()

        reconstruct_smooth_patch_inplace(apr, parts, tree_parts, patch, out_arr)
    else:
        _shape = [apr.org_dims(2), apr.org_dims(1), apr.org_dims(0)]
        if out_arr is None or out_arr.size != np.prod(_shape):
            out_arr = np.zeros(shape=_shape, dtype=_dtype)

        reconstruct_smooth_inplace(apr, parts, out_arr)
    return out_arr
Exemplo n.º 5
0
def initialize_particles_type(typestr):
    if typestr == 'uint16':
        return pyapr.ShortParticles()
    if typestr == 'float':
        return pyapr.FloatParticles()
    if typestr == 'uint8':
        return pyapr.ByteParticles()
    if typestr == 'uint64':
        return pyapr.LongParticles()

    print('Deducted datatype {} is currently not supported - returning None'.
          format(typestr))
    return None
Exemplo n.º 6
0
def get_apr(image,
            rel_error=0.1,
            gradient_smoothing=2,
            verbose=True,
            params=None):

    # check that the image array is c-contiguous
    if not image.flags['C_CONTIGUOUS']:
        print(
            'WARNING: \'image\' argument given to get_apr is not C-contiguous \n'
            'input image has been replaced with a C-contiguous copy of itself')
        image = np.ascontiguousarray(image)

    # Initialize objects
    apr = pyapr.APR()

    if params is None:
        par = pyapr.APRParameters()
        par.auto_parameters = True
        par.rel_error = rel_error
        par.gradient_smoothing = gradient_smoothing
    else:
        par = params

    if image.dtype == np.float32:
        parts = pyapr.FloatParticles()
        converter = pyapr.converter.FloatConverter()
    elif image.dtype == np.uint16:
        parts = pyapr.ShortParticles()
        converter = pyapr.converter.ShortConverter()
    # elif image.dtype in {'byte', 'uint8'}:  # currently not working
    #     parts = pyapr.ByteParticles()
    #     converter = pyapr.converter.ByteConverter()
    else:
        errstr = 'pyapr.converter.get_apr: input image dtype must be numpy.uint16 or numpy.float32, ' \
                 'but {} was given'.format(image.dtype)
        raise TypeError(errstr)

    converter.set_parameters(par)
    converter.set_verbose(verbose)

    # Compute the APR and sample particles
    converter.get_apr(apr, image)
    parts.sample_image(apr, image)

    return apr, parts
Exemplo n.º 7
0
def main():
    """
    This demo reads an APR, applies a convolution operation and displays the result
    """

    io_int = pyapr.filegui.InteractiveIO()
    fpath_apr = io_int.get_apr_file_name()  # get APR file path from gui

    # Instantiate APR and particle objects
    apr = pyapr.APR()
    parts = pyapr.ShortParticles()  # input particles can be float32 or uint16
    # parts = pyapr.FloatParticles()

    # Read from APR file
    pyapr.io.read(fpath_apr, apr, parts)

    # Stencil and output must be float32
    stencil = pyapr.numerics.filter.get_gaussian_stencil(size=5,
                                                         sigma=1,
                                                         ndims=3,
                                                         normalize=True)
    out = pyapr.FloatParticles()

    # Convolve using CPU:
    pyapr.numerics.convolve(apr,
                            parts,
                            out,
                            stencil,
                            use_stencil_downsample=True,
                            normalize_stencil=True,
                            use_reflective_boundary=False)

    # Alternative CPU convolution method (produces the same result as 'convolve'):
    # pyapr.numerics.convolve_pencil(apr, parts, out, stencil, use_stencil_downsample=True,
    #                                normalize_stencil=True, use_reflective_boundary=False)

    # Convolve using GPU (stencil must be of shape 3x3x3 or 5x5x5):
    # pyapr.numerics.convolve_cuda(apr, parts, out, stencil, use_stencil_downsample=True,
    #                          normalize_stencil=True, use_reflective_boundary=False)

    # Display the result
    pyapr.viewer.parts_viewer(apr, out)
Exemplo n.º 8
0
def raycast_viewer(apr, parts):

    # Raycast viewer currently only works for ShortParticles
    if isinstance(parts, pyapr.FloatParticles):
        print(
            'Warning: raycast_viewer is currently only implemented for ShortParticles. '
            'Using a uint16 copy of the input particles.')
        parts_short = pyapr.ShortParticles()
        parts_short.copy(parts)
    else:
        parts_short = parts

    pg.setConfigOption('background', 'w')
    pg.setConfigOption('foreground', 'k')
    pg.setConfigOption('imageAxisOrder', 'row-major')

    app = QtGui.QApplication.instance()
    if app is None:
        app = QtGui.QApplication([])

    # Create window with GraphicsView widget
    win = MainWindowImage()
    win.show()
    win.apr_ref = apr
    win.app_ref = app

    raycaster = pyapr.viewer.raycaster()
    raycaster.set_z_anisotropy(1)
    raycaster.set_radius(0.1)

    win.view.setMouseEnabled(False, False)
    win.raycaster_ref = raycaster
    win.raycaster_ref.set_angle(win.current_theta)
    win.raycaster_ref.set_phi(win.current_phi)

    tree_parts = pyapr.FloatParticles()
    pyapr.viewer.get_down_sample_parts(apr, parts, tree_parts)

    win.set_image(apr, parts_short, tree_parts)
    app.exec_()
Exemplo n.º 9
0
def get_apr_interactive(image,
                        rel_error=0.1,
                        gradient_smoothing=2,
                        verbose=True,
                        params=None,
                        slider_decimals=1):

    # check that the image array is c-contiguous
    if not image.flags['C_CONTIGUOUS']:
        print(
            'WARNING: \'image\' argument given to get_apr_interactive is not C-contiguous \n'
            'input image has been replaced with a C-contiguous copy of itself')
        image = np.ascontiguousarray(image)

    while image.ndim < 3:
        image = np.expand_dims(image, axis=0)

    # Initialize objects
    io_int = pyapr.InteractiveIO()
    apr = pyapr.APR()

    if params is None:
        par = pyapr.APRParameters()
        par.auto_parameters = False
        par.rel_error = rel_error
        par.gradient_smoothing = gradient_smoothing
    else:
        par = params

    if image.dtype == np.float32:
        parts = pyapr.FloatParticles()
        converter = pyapr.converter.FloatConverter()
    elif image.dtype == np.uint16:
        parts = pyapr.ShortParticles()
        converter = pyapr.converter.ShortConverter()
    # elif image.dtype in {'byte', 'uint8'}:  # currently not working
    #     parts = pyapr.ByteParticles()
    #     converter = pyapr.converter.ByteConverter()
    else:
        errstr = 'pyapr.converter.get_apr_interactive: input image dtype must be numpy.uint16 or numpy.float32, ' \
                 'but {} was given'.format(image.dtype)
        raise TypeError(errstr)

    converter.set_parameters(par)
    converter.set_verbose(verbose)

    # launch interactive APR converter
    io_int.interactive_apr(converter,
                           apr,
                           image,
                           slider_decimals=slider_decimals)

    if verbose:
        print("Total number of particles: {}".format(
            apr.total_number_particles()))
        print("Number of pixels in original image: {}".format(image.size))
        cr = image.size / apr.total_number_particles()
        print("Compuational Ratio: {:7.2f}".format(cr))

    # sample particles
    parts.sample_image(apr, image)

    return apr, parts