Exemplo n.º 1
0
 def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray:
     zero_copy_only = _is_zero_copy_only(pa_array.type)
     if isinstance(pa_array, pa.ChunkedArray):
         # don't call to_numpy() directly or we end up with a np.array with dtype object
         # call to_numpy on the chunks instead
         # for ArrayExtensionArray call py_list directly to support dynamic dimensions
         if isinstance(pa_array.type, _ArrayXDExtensionType):
             array: List = [
                 row for chunk in pa_array.chunks
                 for row in chunk.to_pylist()
             ]
         else:
             array: List = [
                 row for chunk in pa_array.chunks
                 for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
             ]
     else:
         # cast to list of arrays or we end up with a np.array with dtype object
         # for ArrayExtensionArray call py_list directly to support dynamic dimensions
         if isinstance(pa_array.type, _ArrayXDExtensionType):
             array: List = pa_array.to_pylist()
         else:
             array: List = pa_array.to_numpy(
                 zero_copy_only=zero_copy_only).tolist()
     if len(array) > 0:
         if any(
                 isinstance(x, np.ndarray) and (
                     x.dtype == np.object or x.shape != array[0].shape)
                 for x in array):
             return np.array(array,
                             copy=False,
                             **{
                                 **self.np_array_kwargs, "dtype": np.object
                             })
     return np.array(array, copy=False, **self.np_array_kwargs)
Exemplo n.º 2
0
    def add_input(self, accumulator: _PartialNLStats,
                  feature_path: types.FeaturePath,
                  feature_array: pa.Array) -> _PartialNLStats:
        """Return result of folding a batch of inputs into accumulator.

    Args:
      accumulator: The current accumulator.
      feature_path: The path of the feature.
      feature_array: An arrow Array representing a batch of feature values which
        should be added to the accumulator.

    Returns:
      The accumulator after updating the statistics for the batch of inputs.
    """
        if feature_path not in self._valid_feature_paths:
            accumulator.invalidate = True
            return accumulator

        feature_type = stats_util.get_feature_type_from_arrow_type(
            feature_path, feature_array.type)
        # Ignore null array.
        if feature_type is None:
            return accumulator

        if feature_type not in self._feature_type_fns:
            accumulator.invalidate = True
            return accumulator

        feature_type_fn = self._feature_type_fns[feature_type]

        vocab = None
        rvocab = None
        if self._nld_vocabularies[feature_path]:
            vocab_name = self._nld_vocabularies[feature_path]
            vocab = self._vocabs[vocab_name]
            rvocab = self._rvocabs[vocab_name]

        excluded_string_tokens = self._nld_excluded_string_tokens[feature_path]
        excluded_int_tokens = self._nld_excluded_int_tokens[feature_path]
        oov_string_tokens = self._nld_oov_string_tokens[feature_path]
        int_tokens = self._nld_specified_int_tokens[feature_path]
        string_tokens = self._nld_specified_str_tokens[feature_path]
        sequence_length_excluded_int_tokens = (
            self._nld_sequence_length_excluded_int_tokens[feature_path])
        sequence_length_excluded_string_tokens = (
            self._nld_sequence_length_excluded_string_tokens[feature_path])

        # TODO(b/175875824): Benchmark and optimize performance.
        for row in feature_array.to_pylist():
            if row is not None:
                feature_type_fn(row, accumulator, excluded_string_tokens,
                                excluded_int_tokens, oov_string_tokens, vocab,
                                rvocab, int_tokens, string_tokens,
                                sequence_length_excluded_int_tokens,
                                sequence_length_excluded_string_tokens,
                                self._num_histogram_buckets)
        return accumulator
Exemplo n.º 3
0
def _Normalize(array: pa.Array) -> pa.Array:
    """Round trips array through python objects.

  Comparing nested arrays with slices is buggy in Arrow 2.0 this method
  is useful comparing two such arrays for logical equality. The bugs
  appears to be fixed as of Arrow 5.0 this should be removable once that
  becomes the minimum version.

  Args:
    array: The array to normalize.

  Returns:
    An array that doesn't have any more zero copy slices in itself or
    it's children. Note the schema might be slightly different for
    all null arrays.
  """
    return pa.array(array.to_pylist())