Exemplo n.º 1
0
from pyarts.workspace import Workspace
from pyarts.classes.EnergyLevelMap import EnergyLevelMap
from pyarts.classes import from_workspace

# Get a workspace
ws = Workspace()
datapath = "../"

elm1 = EnergyLevelMap()
elm1.readxml(datapath +
             "controlfiles/artscomponents/nlte/testdata/nlte_testdata.xml")
ws.ReadXML(
    ws.nlte_field,
    datapath + "controlfiles/artscomponents/nlte/testdata/nlte_testdata.xml")
elm2 = from_workspace(ws.nlte_field)

assert elm1, "Bad read"
assert elm1 == elm2, "Bad read"
assert elm1.data

elm3 = EnergyLevelMap()
elm3.set(elm1)

assert elm3 == elm2

elm4 = EnergyLevelMap()
elm1.savexml("tmp.elm.xml", "binary")
elm4.readxml("tmp.elm.xml")
assert elm4 == elm1
Exemplo n.º 2
0
class _ARTS:
    def __init__(self,
                 ws=None,
                 threads=None,
                 nstreams=4,
                 scale_vmr=True,
                 verbosity=0):
        """Initialize a wrapper for an ARTS workspace.

        Parameters:
            ws (pyarts.workspace.Workspace): An ARTS workspace.
            threads (int): Number of threads to use.
                Default is all available threads.
            nstreams (int): Number of viewing angles to base the radiative
                flux calculation on.
            scale_vmr (bool): Control whether dry volume mixing ratios are
                scaled with the water-vapor concentration (default is `False.`)
            verbosity (int): Control the ARTS verbosity from 0 (quiet) to 2.
        """
        from pyarts.workspace import Workspace, arts_agenda

        self.nstreams = nstreams
        self.scale_vmr = scale_vmr

        if ws is None:
            self.ws = Workspace(verbosity=verbosity)

        self.ws.execute_controlfile("general/general.arts")
        self.ws.execute_controlfile("general/continua.arts")
        self.ws.execute_controlfile("general/agendas.arts")
        self.ws.execute_controlfile("general/planet_earth.arts")

        # Agenda settings
        self.ws.Copy(self.ws.abs_xsec_agenda, self.ws.abs_xsec_agenda__noCIA)
        self.ws.Copy(self.ws.iy_main_agenda, self.ws.iy_main_agenda__Emission)
        self.ws.Copy(self.ws.iy_space_agenda,
                     self.ws.iy_space_agenda__CosmicBackground)
        self.ws.Copy(self.ws.iy_surface_agenda,
                     self.ws.iy_surface_agenda__UseSurfaceRtprop)
        self.ws.Copy(
            self.ws.propmat_clearsky_agenda,
            self.ws.propmat_clearsky_agenda__LookUpTable,
        )
        self.ws.Copy(self.ws.ppath_agenda,
                     self.ws.ppath_agenda__FollowSensorLosPath)
        self.ws.Copy(self.ws.ppath_step_agenda,
                     self.ws.ppath_step_agenda__GeometricPath)

        @arts_agenda
        def p_eq_agenda(workspace):
            workspace.water_p_eq_fieldMK05()

        self.ws.Copy(self.ws.water_p_eq_agenda, p_eq_agenda)

        @arts_agenda
        def cloudbox_agenda(workspace):
            workspace.iyInterpCloudboxField()

        self.ws.Copy(self.ws.iy_cloudbox_agenda, cloudbox_agenda)

        # Number of Stokes components to be computed
        self.ws.IndexSet(self.ws.stokes_dim, 1)

        self.ws.jacobianOff()  # No jacobian calculation
        self.ws.cloudboxOff()  # Clearsky = No scattering

        # Set Absorption Species
        self.ws.abs_speciesSet(species=[
            "O2, O2-CIAfunCKDMT100",
            "H2O, H2O-SelfContCKDMT252, H2O-ForeignContCKDMT252",
            "O3",
            "CO2, CO2-CKDMT252",
            "N2, N2-CIAfunCKDMT252, N2-CIArotCKDMT252",
            "N2O",
            "CH4",
            "CO",
        ])

        # Surface handling
        self.ws.VectorSetConstant(self.ws.surface_scalar_reflectivity, 1, 0.0)
        self.ws.Copy(
            self.ws.surface_rtprop_agenda,
            self.ws.
            surface_rtprop_agenda__Specular_NoPol_ReflFix_SurfTFromt_surface,
        )

        # Read lookup table
        abs_lookup = os.getenv("KONRAD_LOOKUP_TABLE",
                               join(dirname(__file__), "data/abs_lookup.xml"))

        if not isfile(abs_lookup):
            raise FileNotFoundError(
                "Could not find ARTS absorption lookup table.\n"
                "To perform ARTS calculations you have to download the lookup "
                "table at:\n\n    https://doi.org/10.5281/zenodo.3885410\n\n"
                "Afterwards, use the following environment variable to tell "
                "konrad where to find it:\n\n"
                "    $ export KONRAD_LOOKUP_TABLE='/path/to/abs_lookup.xml'")

        self.ws.ReadXML(self.ws.abs_lookup, abs_lookup)
        self.ws.f_gridFromGasAbsLookup()
        self.ws.abs_lookupAdapt()

        # Sensor settings
        self.ws.sensorOff()  # No sensor properties

        # Atmosphere
        self.ws.AtmosphereSet1D()

        # Set number of OMP threads
        if threads is not None:
            self.ws.SetNumberOfThreads(threads)

    def calc_lookup_table(self, filename=None, fnum=2**15, wavenumber=None):
        """Calculate an absorption lookup table.

        The lookup table is constructed to cover surface temperatures
        between 200 and 400 K, and water vapor mixing ratio up to 40%.

        The frequency grid covers the whole outgoing longwave spectrum
        from 10 to 3,250 cm^-1.

        References:
            An absorption lookup table can be found at
                https://doi.org/10.5281/zenodo.3885410

        Parameters:
            filename (str): (Optional) path to an ARTS XML file
                to store the lookup table.
            fnum (int): Number of frequencies in frequency grid.
                Ignored if `wavenumber` is set.
            wavenumber (ndarray): Wavenumber grid [m-1].
        """
        # Create a frequency grid
        if wavenumber is None:
            wavenumber = np.linspace(10e2, 3_250e2, fnum)
        self.ws.f_grid = ty.physics.wavenumber2frequency(wavenumber)

        # Read line catagloge and create absorption lines.
        self.ws.ReadSplitARTSCAT(
            abs_lines=self.ws.abs_lines,
            abs_species=self.ws.abs_species,
            basename="hitran_split_artscat5/",
            fmin=0.0,
            fmax=1e99,
            globalquantumnumbers="",
            localquantumnumbers="",
            ignore_missing=0,
        )

        # Set line shape and cut off.
        self.ws.abs_linesSetLineShapeType(self.ws.abs_lines, "VP")
        self.ws.abs_linesSetNormalization(self.ws.abs_lines, "VVH")
        self.ws.abs_linesSetCutoff(self.ws.abs_lines, "ByLine", 750e9)

        self.ws.abs_lines_per_speciesCreateFromLines()
        self.ws.abs_lines_per_speciesCompact()

        # Create a standard atmosphere
        p_grid = get_quadratic_pgrid(1_200e2, 0.5, 80)

        atmosphere = Atmosphere(p_grid)
        atmosphere["T"][
            -1, :] = 300.0 + 5.0 * np.log(atmosphere["plev"] / 1000e2)
        atmosphere.tracegases_rcemip()
        atmosphere["O2"][:] = 0.2095
        atmosphere["CO2"][:] = 1.5 * 348e-6

        h2o = 0.01 * (p_grid / 1000e2)**0.2
        atmosphere["H2O"][:] = h2o[:-1]

        # Convert the konrad atmosphere into an ARTS atm_fields_compact.
        atm_fields_compact = atmosphere.to_atm_fields_compact()
        self.ws.atm_fields_compact = atm_fields_compact

        self.ws.atm_fields_compactAddConstant(
            atm_fields_compact=self.ws.atm_fields_compact,
            name="abs_species-N2",
            value=0.7808,
            condensibles=["abs_species-H2O"],
        )

        # Setup the lookup table calculation
        self.ws.AtmFieldsAndParticleBulkPropFieldFromCompact()
        self.ws.vmr_field.value = self.ws.vmr_field.value.clip(min=0.0)
        self.ws.atmfields_checkedCalc()
        self.ws.abs_lookupSetup(p_step=1.0)  # Do not refine p_grid
        self.ws.abs_t_pert = np.arange(-160, 61, 20)

        nls_idx = [
            i for i, tag in enumerate(self.ws.abs_species.value)
            if "H2O" in tag[0]
        ]
        self.ws.abs_speciesSet(
            abs_species=self.ws.abs_nls,
            species=[", ".join(self.ws.abs_species.value[nls_idx[0]])],
        )

        self.ws.abs_nls_pert = np.array(
            [10**x for x in [-9, -7, -5, -3, -1, 0, 0.5, 1, 1.5, 2]])

        # Run checks
        self.ws.abs_xsec_agenda_checkedCalc()
        self.ws.lbl_checkedCalc()

        # Calculate actual lookup table.
        self.ws.abs_lookupCalc()

        if filename is not None:
            self.ws.WriteXML("binary", self.ws.abs_lookup, filename)

    def set_atmospheric_state(self, atmosphere, t_surface):
        """Set and check the atmospheric fields."""
        import pyarts

        atm_fields_compact = atmosphere.to_atm_fields_compact()

        # Scale dry-air VMRs with H2O and CO2 content.
        if self.scale_vmr:
            variable_vmrs = (atm_fields_compact.get("abs_species-H2O")[0] +
                             atm_fields_compact.get("abs_species-CO2")[0])
        else:
            t3_shape = atm_fields_compact.get("abs_species-H2O")[0].shape
            variable_vmrs = np.zeros(t3_shape)

        for species in atm_fields_compact.grids[0]:
            if (species.startswith("abs_species-") and "H2O" not in species
                    and "CO2" not in species):
                atm_fields_compact.scale(species, 1 - variable_vmrs)

        # Compute the N2 VMR as a residual of the full atmosphere composition.
        n2 = pyarts.types.GriddedField3(
            grids=atm_fields_compact.grids[1:],
            data=0.7808 * (1 - variable_vmrs),
        )

        self.ws.atm_fields_compact = atm_fields_compact
        self.ws.atm_fields_compactAddSpecies(
            atm_fields_compact=self.ws.atm_fields_compact,
            name="abs_species-N2",
            value=n2,
        )
        self.ws.AtmFieldsAndParticleBulkPropFieldFromCompact()
        self.ws.vmr_field = self.ws.vmr_field.value.clip(min=0)

        # Surface & TOA
        # Add pressure layers to the surface and top-of-the-atmosphere to
        # ensure consistent atmosphere boundaries between ARTS and RRTMG.
        self.ws.t_surface = np.array([[t_surface]])
        self.ws.z_surface = np.array([[0.0]])
        self.ws.z_field.value[0, 0, 0] = 0.0

        # Perform configuration and atmosphere checks
        self.ws.atmfields_checkedCalc()
        self.ws.propmat_clearsky_agenda_checkedCalc()
        self.ws.atmgeom_checkedCalc()
        self.ws.cloudbox_checkedCalc()

    def calc_spectral_irradiance_field(self, atmosphere, t_surface):
        """Calculate the spectral irradiance field."""
        self.set_atmospheric_state(atmosphere, t_surface)

        # get the zenith angle grid and the integrations weights
        self.ws.AngularGridsSetFluxCalc(N_za_grid=self.nstreams,
                                        N_aa_grid=1,
                                        za_grid_type="double_gauss")

        # calculate intensity field
        self.ws.Tensor3Create("trans_field")
        self.ws.spectral_radiance_fieldClearskyPlaneParallel(
            trans_field=self.ws.trans_field,
            use_parallel_za=0,
        )
        self.ws.spectral_irradiance_fieldFromSpectralRadianceField()

        return (
            self.ws.f_grid.value.copy(),
            self.ws.p_grid.value.copy(),
            self.ws.spectral_irradiance_field.value.copy(),
            self.ws.trans_field.value[:, 1:, 0].copy().prod(axis=1),
        )

    def calc_optical_thickness(self, atmosphere, t_surface):
        """Calculate the spectral irradiance field."""
        self.set_atmospheric_state(atmosphere, t_surface)

        self.ws.propmat_clearsky_fieldCalc()

        tau = np.trapz(
            y=self.ws.propmat_clearsky_field.value[:, :, 0, 0, :, 0, 0],
            x=self.ws.z_field.value[:, 0, 0],
            axis=-1,
        )

        return self.ws.f_grid.value.copy(), tau

    @staticmethod
    def integrate_spectral_irradiance(frequency, irradiance):
        """Integrate the spectral irradiance field over the frequency.

        Parameters:
            frequency (ndarray): Frequency [Hz].
            irradiance (ndarray): Spectral irradiance [W m^-2 / Hz].

        Returns:
            ndarray, ndarray: Downward flux, upward, flux [W m^-2]
        """
        F = np.trapz(irradiance, frequency, axis=0)[:, 0, 0, :]

        # Fluxes
        lw_down = -F[:, 0]
        lw_up = F[:, 1]

        return lw_down, lw_up

    def calc_spectral_olr(self, atmosphere, surface):
        """Calculate the outgoing longwave radiation as function of wavenumber.

        Parameters:
            atmosphere (konrad.atmosphere.Atmosphere): Atmosphere model.
            surface (konrad.surface.Surface): Surface model.

        Returns:
           ndarray: Outgoing longwave radiation [W m^-2 / cm^-1]
        """
        f, _, irradiance_field, _ = self.calc_spectral_irradiance_field(
            atmosphere=atmosphere, t_surface=surface["temperature"][0])
        return f, irradiance_field[:, -1, 0, 0, 1]
Exemplo n.º 3
0
from pyarts.workspace import Workspace
from pyarts.classes.ScatteringMetaData import ScatteringMetaData
from pyarts.classes.SingleScatteringData import SingleScatteringData
from pyarts.classes import from_workspace


# Get a workspace
ws = Workspace()
datapath = "../../arts-xml-data/" if not os.getenv("ARTS_XML_DATA_DIR") else os.getenv("ARTS_XML_DATA_DIR")
fn1 = os.path.join(datapath, 'scattering/H2O_ice/MieSphere_R1.00000e+00um.meta.xml')
fn2 = os.path.join(datapath, 'scattering/H2O_ice/MieSphere_R1.00000e+00um.xml')

smd1 = ScatteringMetaData()
smd1.readxml(fn1)
smd2 = from_workspace(ws.scat_meta_single)
ws.ReadXML(ws.scat_meta_single, fn1)
smd3 = ScatteringMetaData()
smd3.set(smd2)

assert smd1 == smd2
assert smd1 == smd3

ssd1 = SingleScatteringData()
ssd1.readxml(fn2)
ssd2 = from_workspace(ws.scat_data_single)
ws.ReadXML(ws.scat_data_single, fn2)
ssd3 = SingleScatteringData()
ssd3.set(ssd2)

assert ssd1 == ssd2
assert ssd1 == ssd3
Exemplo n.º 4
0
rq2.target.type = "Special"
rq2.target.subtype = "SurfaceString"
rq2.target.perturbation = 0.0
rq2.grids = ArrayOfVector([p, lat, lon])
rq2.target.string_key = "I am a string"
rq2.target.quantumidentity = qn
rq2.target.specieslist = aost

arq.append(rq2)

rq2.target.type = "Line"
rq2.target.subtype = "VMR"

arq.append(rq2)

rq2.target.type = "Special"
rq2.target.subtype = "ArrayOfSpeciesTagVMR"

arq.append(rq2)

arq2 = ArrayOfRetrievalQuantity()
arq.savexml("tmp.arq.xml", "ascii")
arq2.readxml("tmp.arq.xml")

try:
    assert arq == arq2
except:
    ws.ReadXML(ws.jacobian_quantities, "tmp.arq.xml")
    assert arq == arq2
    Warning("We had a failure that should not be!!!")
Exemplo n.º 5
0
import os

from pyarts.workspace import Workspace
from pyarts.classes.SpeciesAuxData import SpeciesAuxData
from pyarts.classes import from_workspace

# Get a workspace
ws = Workspace()
datapath = "../../arts-xml-data/" if not os.getenv(
    "ARTS_XML_DATA_DIR") else os.getenv("ARTS_XML_DATA_DIR")
fn = os.path.join(datapath, 'planets/Mars/isotopratio_Mars.xml')

sad1 = SpeciesAuxData()
sad1.readxml(fn)
sad2 = from_workspace(ws.isotopologue_ratios)
ws.ReadXML(ws.isotopologue_ratios, fn)
sad3 = SpeciesAuxData()
sad3.set(sad2)
sad4 = SpeciesAuxData()

sad1.savexml("tmp.sad.xml", "binary")
sad4.readxml("tmp.sad.xml")
assert sad1 == sad4

assert sad1 == sad2
assert sad1 == sad3
Exemplo n.º 6
0
from pyarts.workspace import Workspace
from pyarts.classes.CIARecord import CIARecord, ArrayOfCIARecord
from pyarts.classes import from_workspace

# Get a workspace
ws = Workspace()
datapath = "../../arts-xml-data/" if not os.getenv(
    "ARTS_XML_DATA_DIR") else os.getenv("ARTS_XML_DATA_DIR")
fn = os.path.join(datapath,
                  "spectroscopy/cia/borysow/Borysow_CIA_JUICE_SWI.xml")

acr1 = ArrayOfCIARecord()
assert not acr1, "Bad init"

acr1.readxml(fn)
ws.ReadXML(ws.abs_cia_data, fn)
acr2 = from_workspace(ws.abs_cia_data)

assert acr1, "Bad read"
assert acr1 == acr2, "Bad read"
assert isinstance(acr1[0], CIARecord), "Bad type"

acr3 = ArrayOfCIARecord()
acr3.set(acr1)
assert acr1 == acr3, "Bad read"

acr1.savexml("tmp.acr.xml", "binary")
acr3 = ArrayOfCIARecord()
acr3.readxml("tmp.acr.xml")
assert acr3 == acr1