Exemplo n.º 1
0
 def test_bayes_evidence(self):
     k = pb.KalmanFilter(**self.setup_2)
     y = np.array([[4.1], [-0.2], [1.4], [-2.1]])
     u = np.array([[4.8], [-0.3], [1.1], [-1.8]])
     exp_mu = np.array([
         [ 3.62004716, -0.46320771],
         [-0.16638519,  3.58787721],
         [ 1.21108425,  0.0224309 ],
         [-1.87141692,  0.98517451]
     ])
     exp_var = np.array([
         [ 0.00999960, 40.3342872],
         [ 0.00999029,  0.20999610],
         [ 0.00963301,  0.20962422],
         [ 0.00963191,  0.20930431]
     ])
     # in:  y_t -1,  y_t,  y_t + 1
     exp_evidences_log = np.array([
         [ -3.68958564, -3.68287128,  -3.68015356],
         [ -3.16749303, -2.75744797,  -2.44453198],
         [ -2.69696927, -8.75357053, -18.48011903],
         [-10.17228316, -3.47352413,  -0.45566728]
     ])
     for i in range(4):
         k.bayes(y[i], u[i])
         post = k.posterior()
         self.assertApproxEqual(post.mean(), exp_mu[i])
         self.assertApproxEqual(post.variance(), exp_var[i])
         evidences = np.array([k.evidence_log(y[i] - 1.), k.evidence_log(y[i]), k.evidence_log(y[i] + 1.)])
         self.assertApproxEqual(evidences, exp_evidences_log[i])
Exemplo n.º 2
0
 def test_bayes(self):
     k = pb.KalmanFilter(**self.setup_2)
     y = np.array([[4.1], [-0.2], [1.4], [-2.1]])
     u = np.array([[4.8], [-0.3], [1.1], [-1.8]])
     exp_mu = np.array([[3.62004716, -0.46320771],
                        [-0.16638519, 3.58787721], [1.21108425, 0.0224309],
                        [-1.87141692, 0.98517451]])
     for i in range(4):
         k.bayes(y[i], u[i])
         mu = k.posterior().mu
         self.assertApproxEqual(mu, exp_mu[i])
Exemplo n.º 3
0
def run_kalman_on_mat_data(input_file, output_file, timer):
    # this should be here so that only this stress fails when scipy is not installed
    loadmat = scipy.io.loadmat
    savemat = scipy.io.savemat

    d = loadmat(input_file, struct_as_record=True, mat_dtype=True)

    mu0 = np.reshape(d.pop('mu0'),
                     (-1, ))  # otherwise we would get 2D array of shape (1xN)
    P0 = d.pop('P0')
    y = d.pop('y').T
    u = d.pop('u').T
    #x = d.pop('x').T
    x = None

    gauss = pb.GaussPdf(mu0, P0)
    kalman = pb.KalmanFilter(d['A'], d['B'], d['C'], d['D'], d['Q'], d['R'],
                             gauss)

    N = y.shape[0]
    n = mu0.shape[0]
    mean = np.zeros((N, n))
    var = np.zeros((N, n))

    timer.start()
    for t in range(1, N):  # the 1 start offset is intentional
        kalman.bayes(y[t], u[t])
        mean[t] = kalman.posterior().mean()
        #var[t]  = kalman.posterior().variance()
    timer.stop()

    var = np.sqrt(var)  # to get standard deviation
    plt = None  # turn off plotting for now
    if plt:
        axis = np.arange(N)
        plt.plot(axis, x[:, 0], 'k-', label='x_1')
        plt.plot(axis, x[:, 1], 'k--', label='x_2')
        plt.errorbar(axis, mean[:, 0], fmt='s',
                     label='mu_1')  # yerror=var[:,0]
        plt.errorbar(axis, mean[:, 1], fmt='D',
                     label='mu_2')  # yerror=var[:,1]
        plt.legend()
        plt.show()

    savemat(output_file, {
        "Mu_py": mean.T,
        "exec_time_pybayes": timer.spent[0]
    },
            oned_as='row')
Exemplo n.º 4
0
    def test_deepcopy(self):
        """Test that deep copying KF works as expected"""
        o = pb.KalmanFilter(**self.setup_2)  # original
        c = deepcopy(o)  # copy
        self.assertEqual(type(c), type(o))

        self.assertTrue(id(o) != id(c))
        for (a, b) in [(o.A, c.A), (o.B, c.B), (o.C, c.C), (o.D, c.D), (o.Q, c.Q), (o.R, c.R)]:
            self.assertArraysEqualNotSame(a, b)
        # n, k, j do not need to be different as they are immutable
        self.assertEqual(o.n, c.n)
        self.assertEqual(o.k, c.k)
        self.assertEqual(o.j, c.j)
        self.assertTrue(id(o.P) != id(c.P))
        self.assertArraysEqualNotSame(o.P.mu, c.P.mu)  # this is better tested in
        self.assertArraysEqualNotSame(o.P.R, c.P.R)  # GaussPdf deepcopy test, but wont hurt here
        self.assertTrue(id(o.S) != id(c.S))
Exemplo n.º 5
0
    def test_copy(self):
        """Test that copying KF works as expected"""
        o = pb.KalmanFilter(**self.setup_1)  # original
        c = copy(o)  # copy
        self.assertEqual(type(c), type(o))

        self.assertTrue(id(o) != id(c))
        self.assertTrue(id(o.A) == id(c.A))
        self.assertTrue(id(o.B) == id(c.B))
        self.assertTrue(id(o.C) == id(c.C))
        self.assertTrue(id(o.D) == id(c.D))
        self.assertTrue(id(o.Q) == id(c.Q))
        self.assertTrue(id(o.R) == id(c.R))
        self.assertTrue(id(o.n) == id(c.n))
        self.assertTrue(id(o.k) == id(c.k))
        self.assertTrue(id(o.j) == id(c.j))
        self.assertTrue(id(o.P) == id(c.P))
        self.assertTrue(id(o.S) == id(c.S))
Exemplo n.º 6
0
    def test_copy(self):
        """Test that copying KF works as expected"""
        o = pb.KalmanFilter(**self.setup_1)  # original
        c = copy(o)  # copy
        self.assertEqual(type(c), type(o))

        self.assertNotEqual(id(o), id(c))
        self.assertArraysSame(o.A, c.A)
        self.assertArraysSame(o.B, c.B)
        self.assertArraysSame(o.C, c.C)
        self.assertArraysSame(o.D, c.D)
        self.assertArraysSame(o.Q, c.Q)
        self.assertArraysSame(o.R, c.R)
        self.assertEqual(o.n, c.n)
        self.assertEqual(o.k, c.k)
        self.assertEqual(o.j, c.j)
        self.assertEqual(id(o.P), id(c.P))
        self.assertEqual(id(o.S), id(c.S))
Exemplo n.º 7
0
 def test_init(self):
     k = pb.KalmanFilter(**self.setup_1)
     self.assertEqual(type(k), pb.KalmanFilter)
     l = pb.KalmanFilter(**self.setup_2)
     self.assertEqual(type(l), pb.KalmanFilter)
Exemplo n.º 8
0
    try:
        from scipy.io import loadmat, savemat
    except ImportError, e:
        raise StopIteration("Kalman filter stress needs scipy installed: " + str(e))

    d = loadmat(input_file, struct_as_record=True, mat_dtype=True)

    mu0 = np.reshape(d.pop('mu0'), (-1,))  # otherwise we would get 2D array of shape (1xN)
    P0 = d.pop('P0')
    y = d.pop('y').T
    u = d.pop('u').T
    #x = d.pop('x').T
    x = None

    gauss = pb.GaussPdf(mu0, P0)
    kalman = pb.KalmanFilter(d['A'], d['B'], d['C'], d['D'], d['Q'], d['R'], gauss)

    N = y.shape[0]
    n = mu0.shape[0]
    mean = np.zeros((N, n))
    var = np.zeros((N, n))

    timer.start()
    for t in xrange(1, N):  # the 1 start offset is intentional
        kalman.bayes(y[t], u[t])
        mean[t] = kalman.posterior().mean()
        #var[t]  = kalman.posterior().variance()
    timer.stop()

    var = np.sqrt(var)  # to get standard deviation
    plt = None  # turn off plotting for now