Exemplo n.º 1
0
    def fn(a, o, p, g, bq):
        gripper_pose = multiply(p.value,
                                invert(g.value))  # w_f_g = w_f_o * (g_f_o)^-1
        approach_pose = multiply(g.approach, gripper_pose)
        link = get_gripper_link(robot, a)
        arm_joints = get_arm_joints(robot, a)

        def ik_fn(target_pose):
            try:
                # TODO: switch to is_ik_compiled
                from .pr2_ik.ik import sample_tool_ik, get_torso_arm_joints
                joints = get_torso_arm_joints(robot, a)
                torso_arm_conf = sample_tool_ik(robot,
                                                a,
                                                target_pose,
                                                torso_limits=None)
                if torso_arm_conf is None:
                    return None
                set_joint_positions(robot, joints, torso_arm_conf)
            except ImportError:
                movable_conf = sub_inverse_kinematics(robot, arm_joints[0],
                                                      link, target_pose)
                if (movable_conf is None) or any(
                        pairwise_collision(robot, b) for b in fixed):
                    return None
            return get_joint_positions(robot, arm_joints)

        default_conf = arm_conf(a, g.carry)
        p.assign()
        bq.assign()
        # TODO: randomly sample initial position to make sampler?
        # TODO: perturb this randomly
        set_joint_positions(robot, arm_joints, default_conf)
        approach_conf = ik_fn(approach_pose)
        if approach_conf is None:
            return None
        grasp_conf = ik_fn(gripper_pose)
        if grasp_conf is None:
            return None
        if teleport:
            path = [default_conf, approach_conf, grasp_conf]
        else:
            #set_joint_positions(robot, arm_joints, approach_conf)
            control_path = plan_joint_motion(robot,
                                             arm_joints,
                                             approach_conf,
                                             obstacles=fixed,
                                             self_collisions=False,
                                             direct=True)
            set_joint_positions(robot, arm_joints, approach_conf)
            retreat_path = plan_joint_motion(robot,
                                             arm_joints,
                                             default_conf,
                                             obstacles=fixed,
                                             self_collisions=False)
            path = retreat_path[::-1] + control_path[::-1]
        mt = create_trajectory(robot, arm_joints, path)
        return (mt, )
Exemplo n.º 2
0
def assign_fluent_state(fluents):
    obstacles = []
    for fluent in fluents:
        name, args = fluent[0], fluent[1:]
        if name == 'atpose':
            o, p = args
            obstacles.append(o)
            p.assign()
        else:
            raise ValueError(name)
    return obstacles
Exemplo n.º 3
0
 def gen(body, surface):
     # TODO: surface poses are being sampled in pr2_belief
     if surface is None:
         surfaces = problem.surfaces
     else:
         surfaces = [surface]
     while True:
         surface = random.choice(surfaces)
         body_pose = sample_placement(body, surface)
         if body_pose is None:
             break
         p = Pose(body, body_pose, surface)
         p.assign()
         if not any(pairwise_collision(body, obst) for obst in obstacles if obst not in {body, surface}):
             yield (p,)
Exemplo n.º 4
0
 def sampler(a, o, p, g):
     gripper_pose = multiply(p.value,
                             invert(g.value))  # w_f_g = w_f_o * (g_f_o)^-1
     default_conf = arm_conf(a, g.carry)
     arm_joints = get_arm_joints(robot, a)
     base_joints = get_group_joints(robot, 'base')
     if learned:  # TODO: cache the learned distribution
         base_generator = learned_pose_generator(robot,
                                                 gripper_pose,
                                                 arm=a,
                                                 grasp_type=g.grasp_type)
     else:
         base_generator = uniform_pose_generator(robot, gripper_pose)
     base_conf = next(base_generator, None)
     if base_conf is None:
         return None
     bq = Conf(robot, base_joints, base_conf)
     p.assign()
     bq.assign()
     set_joint_positions(robot, arm_joints, default_conf)
     if any(pairwise_collision(robot, b) for b in fixed):
         return None
     return (bq, )