Exemplo n.º 1
0
    def setup(self):
        # Initialize cosmology
        par = self.get_cosmological_parameters()
        dpk = self.get_pk()
        a = 1./(1+dpk['z'][::-1])
        self.cosmo = ccl.CosmologyCalculator(Omega_c=par['Omega_m']-par['Omega_b'],
                                             Omega_b=par['Omega_b'],
                                             h=par['h'], n_s=par['n_s'],
                                             A_s=par['A_s'], w0=par['w0'],
                                             pk_linear={'a': a,
                                                        'k': dpk['k'],
                                                        'delta_matter:delta_matter': dpk['pk_lin'][::-1][:]},
                                             pk_nonlin={'a': a,
                                                        'k': dpk['k'],
                                                        'delta_matter:delta_matter': dpk['pk_nl'][::-1][:]})

        # Initialize tracers
        if self.config.get('tracers_from_kernels', False):
            tpar = self.get_tracer_parameters()
            ker = self.get_tracer_kernels()
            a_g = 1./(1+ker['z_cl'][::-1])
            self.t_g = []
            for k in ker['kernels_cl']:
                t = ccl.Tracer()
                barr = np.ones_like(a_g)
                t.add_tracer(self.cosmo,
                             (ker['chi_cl'], k),
                             transfer_a=(a_g, barr))
                self.t_g.append(t)
            self.t_s = []
            for k in ker['kernels_sh']:
                t = ccl.Tracer()
                t.add_tracer(self.cosmo,
                             kernel=(ker['chi_sh'], k),
                             der_bessel=-1, der_angles=2)
                self.t_s.append(t)
        else:
            nzs = self.get_tracer_dndzs()
            tpar = self.get_tracer_parameters()
            z_g = nzs['z_cl']
            z_s = nzs['z_sh']
            self.t_g = [ccl.NumberCountsTracer(self.cosmo, True,
                                               (z_g, nzs['dNdz_cl'][:, ni]),
                                               bias=(z_g,
                                                     np.full(len(z_g), b)))
                        for ni, b in zip(range(0, 10),
                                         tpar['b_g'])]
            self.t_s = [ccl.WeakLensingTracer(self.cosmo,
                                              (z_s, nzs['dNdz_sh'][:, ni]),
                                              True)
                        for ni in range(0, 5)]
Exemplo n.º 2
0
def get_tracer(tracer_type, cosmo=None, **tracer_kwargs):
    if cosmo is None:
        cosmo = COSMO
    z = np.linspace(0., 1., 2000)
    n = dndz(z)
    b = np.sqrt(1. + z)

    if tracer_type == 'nc':
        ntr = 3
        tr = ccl.NumberCountsTracer(cosmo,
                                    True,
                                    dndz=(z, n),
                                    bias=(z, b),
                                    mag_bias=(z, b),
                                    **tracer_kwargs)
    elif tracer_type == 'wl':
        ntr = 2
        tr = ccl.WeakLensingTracer(cosmo,
                                   dndz=(z, n),
                                   ia_bias=(z, b),
                                   **tracer_kwargs)
    elif tracer_type == 'cl':
        ntr = 1
        tr = ccl.CMBLensingTracer(cosmo, 1100., **tracer_kwargs)
    else:
        ntr = 0
        tr = ccl.Tracer(**tracer_kwargs)
    return tr, ntr
Exemplo n.º 3
0
def get_tracer(tracer_type):
    z = np.linspace(0., 1., 2000)
    n = dndz(z)
    b = np.sqrt(1. + z)

    if tracer_type == 'nc':
        ntr = 3
        tr = ccl.NumberCountsTracer(COSMO,
                                    True,
                                    dndz=(z, n),
                                    bias=(z, b),
                                    mag_bias=(z, b))
    elif tracer_type == 'wl':
        ntr = 2
        tr = ccl.WeakLensingTracer(COSMO, dndz=(z, n), ia_bias=(z, b))
    elif tracer_type == 'cl':
        ntr = 1
        tr = ccl.CMBLensingTracer(COSMO, 1100.)
    else:
        ntr = 0
        tr = ccl.Tracer()
    return tr, ntr
Exemplo n.º 4
0
def get_tracer():
    chis = np.linspace(CHIMIN, CHIMAX, NCHI)
    ws = np.ones(NCHI)
    t = ccl.Tracer()
    t.add_tracer(COSMO, kernel=(chis, ws))
    return t
Exemplo n.º 5
0
def test_tracers_analytic(set_up, alpha, beta, gamma, is_factorizable,
                          w_transfer, mismatch, der_bessel, der_angles):
    cosmo = set_up
    zmax = 0.8
    zi = 0.4
    zf = 0.6
    nchi = 1024
    nk = 512

    # x arrays
    chii = ccl.comoving_radial_distance(cosmo, 1. / (1 + zi))
    chif = ccl.comoving_radial_distance(cosmo, 1. / (1 + zf))
    chimax = ccl.comoving_radial_distance(cosmo, 1. / (1 + zmax))
    chiarr = np.linspace(0.1, chimax, nchi)
    if mismatch:
        # Remove elements around the edges
        mask = (chiarr < 0.9 * chif) & (chiarr > 1.1 * chii)
        chiarr_transfer = chiarr[mask]
    else:
        chiarr_transfer = chiarr
    aarr_transfer = ccl.scale_factor_of_chi(cosmo, chiarr_transfer)[::-1]
    aarr = ccl.scale_factor_of_chi(cosmo, chiarr)[::-1]
    lkarr = np.log(10.**np.linspace(-6, 3, nk))

    # Kernel
    wchi = np.ones_like(chiarr)
    wchi[chiarr < chii] = 0
    wchi[chiarr > chif] = 0

    # Transfer
    t = ccl.Tracer()
    if w_transfer:
        ta = (chiarr_transfer**gamma)[::-1]
        tk = np.exp(beta * lkarr)
        if is_factorizable:
            # 1D
            t.add_tracer(cosmo,
                         kernel=(chiarr, wchi),
                         transfer_k=(lkarr, tk),
                         transfer_a=(aarr_transfer, ta),
                         der_bessel=der_bessel,
                         der_angles=der_angles)
        else:
            # 2D
            tka = ta[:, None] * tk[None, :]
            t.add_tracer(cosmo,
                         kernel=(chiarr, wchi),
                         transfer_ka=(aarr_transfer, lkarr, tka),
                         der_bessel=der_bessel,
                         der_angles=der_angles)
    else:
        t.add_tracer(cosmo,
                     kernel=(chiarr, wchi),
                     der_bessel=der_bessel,
                     der_angles=der_angles)

    # Power spectrum
    pkarr = np.ones_like(aarr)[:, None] * (np.exp(alpha * lkarr))[None, :]
    pk2d = ccl.Pk2D(a_arr=aarr, lk_arr=lkarr, pk_arr=pkarr, is_logp=False)

    # C_ells
    larr = np.linspace(2, 3000, 100)
    # 1D
    cl = ccl.angular_cl(cosmo, t, t, larr, p_of_k_a=pk2d)
    # Prediction
    clpred = get_prediction(larr, chii, chif, alpha, beta, gamma, der_bessel,
                            der_angles)

    assert np.all(np.fabs(cl / clpred - 1) < 5E-3)