Exemplo n.º 1
0
def calculate_plateau_age(ages, errors, k39, kind='inverse_variance'):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    ages = asarray(ages)
    errors = asarray(errors)

    k39 = asarray(k39)
    pidx = find_plateaus(ages, errors, k39,
                         overlap_sigma=2)
    if pidx:
        sx=slice(*pidx)
        plateau_ages = ages[sx]

        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx
Exemplo n.º 2
0
def calculate_plateau_age(ages, errors, k39, kind='inverse_variance'):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    ages = asarray(ages)
    errors = asarray(errors)

    k39 = asarray(k39)
    pidx = find_plateaus(ages, errors, k39, overlap_sigma=2)
    if pidx:
        sx = slice(*pidx)
        plateau_ages = ages[sx]

        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx
Exemplo n.º 3
0
    def _calculate_mean(self, attr, use_weights=True):
        args = self._get_values(attr)
        if args:
            vs, es = args
            if use_weights:
                av, werr = calculate_weighted_mean(vs, es)
            else:
                av = vs.mean()
                werr = vs.std(ddof=1)


                #if use_weights:
                #    weights = 1 / es ** 2
                #else:
                #    weights = ones(vs.shape)

                #av, sum_weights = average(vs, weights=weights, returned=True)
                #if use_weights:
                #    werr = sum_weights ** -0.5
                #else:
                #    werr = vs.std(ddof=1)
        else:
            av, werr = 0, 0

        return ufloat(av, werr)
Exemplo n.º 4
0
def calculate_plateau_age(ages, errors, k39, kind='inverse_variance',
                          method='fleck 1977', options=None):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    # print 'ages=array({})'.format(ages)
    # print 'errors=array({})'.format(errors)
    # print 'k39=array({})'.format(k39)
    if options is None:
        options = {}

    ages = asarray(ages)
    errors = asarray(errors)
    k39 = asarray(k39)

    force_steps = options.get('force_steps', False)
    if force_steps:
        sstep, estep = force_steps
        sstep, estep = sstep.upper(), estep.upper()
        if not sstep:
            sidx = 0
        else:
            sidx = ALPHAS.index(sstep)

        n = ages.shape[0] - 1
        if not estep:
            eidx = n
        else:
            eidx = ALPHAS.index(estep)

        sidx, eidx = min(sidx, eidx), min(max(sidx, eidx), n)
        pidx = (sidx, eidx) if sidx < n else None

    else:

        from pychron.processing.plateau import Plateau

        p = Plateau(ages=ages,
                    errors=errors,
                    signals=k39,
                    nsteps=options.get('nsteps', 3),
                    gas_fraction=options.get('gas_fraction', 50))

        pidx = p.find_plateaus(method)

    if pidx:
        sx = slice(pidx[0], pidx[1] + 1)
        plateau_ages = ages[sx]
        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx
Exemplo n.º 5
0
    def _calculate_mean(self, attr, use_weights=True, error_kind=None):
        def sd(a, v, e):
            n = len(v)
            if n == 1:
                we = e[0]
            else:
                we = (sum((a - v) ** 2) / (n - 1)) ** 0.5
            return we

        args = self._get_values(attr)
        sem = 0
        if args:
            vs, es = args
            if use_weights:
                av, werr = calculate_weighted_mean(vs, es)

                if error_kind == 'both':
                    sem = werr
                    werr = sd(av, vs, es)

                elif error_kind == SD:
                    werr = sd(av, vs, es)

            else:
                av = vs.mean()
                werr = vs.std(ddof=1)
        else:
            av, werr = 0, 0

        if error_kind == 'both':
            return av, werr, sem, args
        else:
            return av, werr
Exemplo n.º 6
0
    def _calculate_mean(self, attr, use_weights=True, error_kind=None):
        def sd(a, v, e):
            n = len(v)
            if n == 1:
                we = e[0]
            else:
                we = (sum((a - v)**2) / (n - 1))**0.5
            return we

        args = self._get_values(attr)
        sem = 0
        if args:
            vs, es = args
            if use_weights and any(es):
                av, werr = calculate_weighted_mean(vs, es)

                if error_kind == 'both':
                    sem = werr
                    werr = sd(av, vs, es)

                elif error_kind == SD:
                    werr = sd(av, vs, es)

            else:
                av = vs.mean()
                werr = vs.std(ddof=1)
                sem = werr / len(vs)**0.5
        else:
            av, werr = 0, 0

        if error_kind == 'both':
            return av, werr, sem, args
        else:
            return av, werr
Exemplo n.º 7
0
def calculate_plateau_age(ages, errors, k39, kind='inverse_variance', method=FLECK, options=None, excludes=None):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    if options is None:
        options = {}

    ages = asarray(ages)
    errors = asarray(errors)
    k39 = asarray(k39)

    fixed_steps = options.get('fixed_steps', False)
    if fixed_steps and (fixed_steps[0] or fixed_steps[1]):
        sstep, estep = fixed_steps
        sstep, estep = sstep.upper(), estep.upper()
        if not sstep:
            sidx = 0
        else:
            sidx = alpha_to_int(sstep)

        n = ages.shape[0] - 1
        if not estep:
            eidx = n
        else:
            eidx = alpha_to_int(estep)

        sidx, eidx = min(sidx, eidx), min(max(sidx, eidx), n)
        pidx = (sidx, eidx) if sidx < n else None

    else:

        from pychron.processing.plateau import Plateau

        p = Plateau(ages=ages,
                    errors=errors,
                    signals=k39,
                    excludes=excludes,
                    overlap_sigma=options.get('overlap_sigma', 2),
                    nsteps=options.get('nsteps', 3),
                    gas_fraction=options.get('gas_fraction', 50))

        pidx = p.find_plateaus(method)

    if pidx:
        sx = slice(pidx[0], pidx[1] + 1)
        plateau_ages = ages[sx]
        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx
Exemplo n.º 8
0
    def _calculate_current(self, vs=None):
        if vs is None:
            vs = self._get_values()

        xs, es = vs
        if self.use_weighted_mean:
            return calculate_weighted_mean(xs, es)
        else:
            xs = array(xs)
            return xs.mean(), xs.std()
Exemplo n.º 9
0
    def _make_weighted_mean_row(self, ans):
        r = Row(fontsize=8)

        ages, errors = zip(*[(ai.age.nominal_value, ai.age.std_dev)
                             for ai in ans])

        wm, we = calculate_weighted_mean(ages, errors)
        r.add_item(value='<b>weighted mean</b>', span=2)
        r.add_blank_item(3)
        r.add_item(value='<b>{}</b>'.format(floatfmt(wm)))
        r.add_item(value=u'<b>\u00b1{}</b>'.format(floatfmt(we)))

        return r
Exemplo n.º 10
0
    def _make_weighted_mean_row(self, ans):
        r = Row(fontsize=8)

        ages, errors = zip(*[(ai.age.nominal_value, ai.age.std_dev)
                            for ai in ans])

        wm, we = calculate_weighted_mean(ages, errors)
        r.add_item(value='<b>weighted mean</b>', span=2)
        r.add_blank_item(3)
        r.add_item(value='<b>{}</b>'.format(floatfmt(wm)))
        r.add_item(value=u'<b>\u00b1{}</b>'.format(floatfmt(we)))

        return r
Exemplo n.º 11
0
    def _calculate_stats(self, ages, errors, xs, ys):
        mswd, valid_mswd, n =self.analysis_group.get_mswd_tuple()

        if self.options.mean_calculation_kind == 'kernel':
            wm, we = 0, 0
            delta = 1
            maxs, _mins = find_peaks(ys, xs, delta=delta, lookahead=1)
            wm = max(maxs, axis=1)[0]
        else:
            wm, we = calculate_weighted_mean(ages, errors)
            we = self._calc_error(we, mswd)

        return wm, we, mswd, valid_mswd
Exemplo n.º 12
0
    def _calculate_stats(self, ages, errors, xs, ys):
        mswd, valid_mswd, n = self.analysis_group.get_mswd_tuple()

        if self.options.mean_calculation_kind == 'kernel':
            wm, we = 0, 0
            delta = 1
            maxs, _mins = find_peaks(ys, xs, delta=delta, lookahead=1)
            wm = max(maxs, axis=1)[0]
        else:
            wm, we = calculate_weighted_mean(ages, errors)
            we = self._calc_error(we, mswd)

        return wm, we, mswd, valid_mswd
Exemplo n.º 13
0
    def _calculate_mean(self, attr, use_weights=True, error_kind=None):
        args = self._get_values(attr)
        if args:
            vs, es = args
            if use_weights:
                av, werr = calculate_weighted_mean(vs, es)
                if error_kind == 'SD':
                    n = len(vs)
                    werr = (sum((av - vs)**2) / (n - 1))**0.5

            else:
                av = vs.mean()
                werr = vs.std(ddof=1)
        else:
            av, werr = 0, 0

        return av, werr
Exemplo n.º 14
0
    def _calculate_mean(self, attr, use_weights=True, error_kind=None):
        args = self._get_values(attr)
        if args:
            vs, es = args
            if use_weights:
                av, werr = calculate_weighted_mean(vs, es)
                if error_kind == 'SD':
                    n = len(vs)
                    werr = (sum((av - vs) ** 2) / (n - 1)) ** 0.5

            else:
                av = vs.mean()
                werr = vs.std(ddof=1)
        else:
            av, werr = 0, 0

        return av, werr
Exemplo n.º 15
0
    def load(self):
        ans = self.analyses
        ages = [ai.age for ai in ans]
        errors = [ai.age_err_wo_j for ai in ans]

        self.min_age = min(ages)
        self.max_age = max(ages)
        self.n = n = len(self.analyses)
        self.mean = sum(ages) / float(n)

        wm, we = calculate_weighted_mean(ages, errors)
        self.weighted_mean = wm

        mswd = calculate_mswd(ages, errors, wm=wm)
        self.mswd = mswd
        self.mswd_low, self.mswd_high = get_mswd_limits(n)

        self._create_ideogram()

        self._create_spectrum()
Exemplo n.º 16
0
    def load(self):
        ans = self.analyses
        ages = [ai.age for ai in ans]
        errors = [ai.age_err_wo_j for ai in ans]

        self.min_age = min(ages)
        self.max_age = max(ages)
        self.n = n = len(self.analyses)
        self.mean = sum(ages) / float(n)

        wm, we = calculate_weighted_mean(ages, errors)
        self.weighted_mean = wm

        mswd = calculate_mswd(ages, errors, wm=wm)
        self.mswd = mswd
        self.mswd_low, self.mswd_high = get_mswd_limits(n)

        self._create_ideogram()

        self._create_spectrum()
Exemplo n.º 17
0
    def _calculate_mean(self, attr, use_weights=True):
        args = self._get_values(attr)
        if args:
            vs, es = args
            if use_weights:
                av, werr = calculate_weighted_mean(vs, es)
            else:
                av = vs.mean()
                werr = vs.std(ddof=1)

                #if use_weights:
                #    weights = 1 / es ** 2
                #else:
                #    weights = ones(vs.shape)

                #av, sum_weights = average(vs, weights=weights, returned=True)
                #if use_weights:
                #    werr = sum_weights ** -0.5
                #else:
                #    werr = vs.std(ddof=1)
        else:
            av, werr = 0, 0

        return ufloat(av, werr)
Exemplo n.º 18
0
def calculate_plateau_age(ages, errors, k39, kind='inverse_variance', method='fleck 1977'):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    # print 'ages=array({})'.format(ages)
    # print 'errors=array({})'.format(errors)
    # print 'k39=array({})'.format(k39)

    ages = asarray(ages)
    errors = asarray(errors)

    k39 = asarray(k39)
    from pychron.processing.plateau import Plateau

    p = Plateau(ages=ages,
                errors=errors,
                signals=k39)
    pidx = p.find_plateaus(method)
    # pidx = find_plateaus(ages, errors, k39,
    #                      overlap_sigma=2)
    if pidx:
        sx = slice(*pidx)
        plateau_ages = ages[sx]

        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx
Exemplo n.º 19
0
def calculate_plateau_age(ages,
                          errors,
                          k39,
                          kind='inverse_variance',
                          method='fleck 1977',
                          options=None,
                          excludes=None):
    """
        ages: list of ages
        errors: list of corresponding  1sigma errors
        k39: list of 39ArK signals

        return age, error
    """
    # print 'ages=array({})'.format(ages)
    # print 'errors=array({})'.format(errors)
    # print 'k39=array({})'.format(k39)
    if options is None:
        options = {}

    ages = asarray(ages)
    errors = asarray(errors)
    k39 = asarray(k39)

    force_steps = options.get('force_steps', False)
    if force_steps:
        sstep, estep = force_steps
        sstep, estep = sstep.upper(), estep.upper()
        if not sstep:
            sidx = 0
        else:
            sidx = ALPHAS.index(sstep)

        n = ages.shape[0] - 1
        if not estep:
            eidx = n
        else:
            eidx = ALPHAS.index(estep)

        sidx, eidx = min(sidx, eidx), min(max(sidx, eidx), n)
        pidx = (sidx, eidx) if sidx < n else None

    else:

        from pychron.processing.plateau import Plateau

        p = Plateau(ages=ages,
                    errors=errors,
                    signals=k39,
                    excludes=excludes,
                    nsteps=options.get('nsteps', 3),
                    gas_fraction=options.get('gas_fraction', 50))

        pidx = p.find_plateaus(method)

    if pidx:
        sx = slice(pidx[0], pidx[1] + 1)
        plateau_ages = ages[sx]
        if kind == 'vol_fraction':
            weights = k39[sx]
            wm, we = average(plateau_ages, weights=weights)
        else:
            plateau_errors = errors[sx]
            wm, we = calculate_weighted_mean(plateau_ages, plateau_errors)

        return wm, we, pidx