def _plot(self, rs, tag, n, plotid):
        plot = self.graph.new_plot(padding_left=100)
        plot.y_axis.title = tag

        xs = arange(n)
        ys = array([nominal_value(ri) for ri in rs])
        yes = array([std_dev(ri) for ri in rs])

        p, s, l = self.graph.new_series(xs,
                                        ys,
                                        yerror=yes,
                                        fit='weighted mean',
                                        type='scatter')

        ebo = ErrorBarOverlay(component=s,
                              orientation='y',
                              nsigma=2,
                              visible=True,
                              use_end_caps=True)

        s.underlays.append(ebo)
        s.yerror = ArrayDataSource(yes)

        self.graph.set_x_limits(pad='0.1', plotid=plotid)

        ymin, ymax = min(ys - 2 * yes), max(ys + 2 * yes)
        self.graph.set_y_limits(min_=ymin, max_=ymax, pad='0.1', plotid=plotid)
    def __init__(self, *args, **kw):
        BaseInset.__init__(self, *args, **kw)
        ScatterPlot.__init__(self)

        self.border_visible = kw.get('border_visible', True)
        self.marker = 'circle'
        # self.color = 'red'
        self.marker_size = 1.5
        if not self.visible_axes:
            self.x_axis.visible = False
            self.y_axis.visible = False

        # self.set_limits()

        nsigma = 1
        orientation = 'x'
        line_width = 1
        visible = True
        ebo = ErrorBarOverlay(component=self,
                              orientation=orientation,
                              nsigma=nsigma,
                              line_width=line_width,
                              use_end_caps=False,
                              visible=visible)
        self.overlays.append(ebo)
Exemplo n.º 3
0
    def replot(self):
        graph = self.graph
        if graph is None:
            graph = AnalysisStackedRegressionGraph()
        else:
            graph.clear()

        vs = self._get_values(scalar=self.standard_ratio)
        xs = self._get_xs()

        graph.new_plot()

        plot, scatter, line = graph.new_series(x=xs, y=vs[0],
                                               fit='weighted mean',
                                               yerror=vs[1], type='scatter')

        ebo = ErrorBarOverlay(component=scatter,
                              orientation='y')
        scatter.overlays.append(ebo)

        graph.set_x_title('Time (hrs)')
        graph.set_y_title(self.options.ratio_str)

        graph.set_y_limits(min_=min([v - e for v, e in zip(*vs)]),
                           max_=max([v + e for v, e in zip(*vs)]), pad='0.1')
        graph.set_x_limits(min_=min(xs), max_=max(xs), pad='0.1')

        graph.refresh()
        self.graph = graph
Exemplo n.º 4
0
    def _add_error_bars(self, scatter, errors, axis, nsigma, visible=True):
        ebo = ErrorBarOverlay(component=scatter,
                              orientation=axis,
                              nsigma=nsigma,
                              visible=visible)

        scatter.underlays.append(ebo)
        setattr(scatter, '{}error'.format(axis), ArrayDataSource(errors))
        return ebo
Exemplo n.º 5
0
    def _add_error_bars(self, scatter, errors,
                        orientation='y', visible=True, nsigma=1, line_width=1):
        from pychron.graph.error_bar_overlay import ErrorBarOverlay

        ebo = ErrorBarOverlay(component=scatter,
                              orientation=orientation,
                              nsigma=nsigma,
                              line_width=line_width,
                              visible=visible)

        scatter.underlays.append(ebo)
        # print len(errors),scatter.index.get_size()
        setattr(scatter, '{}error'.format(orientation), ArrayDataSource(errors))
        return ebo
Exemplo n.º 6
0
    def _graph_individual_analyses(self, *args, **kw):
        g = self.graph

        ans, ixs, iys, ies = self._analyses

        s, _p = g.new_series(ixs,
                             iys,
                             yerror=ies,
                             type='scatter',
                             marker='circle',
                             marker_size=1.5,
                             **kw)

        ebo = ErrorBarOverlay(component=s, orientation='y')
        s.underlays.append(ebo)
        s.error_bars = ebo

        add_analysis_inspector(s, ans)

        s.index.on_trait_change(self._update_graph_metadata,
                                'metadata_changed')
        return s, iys
Exemplo n.º 7
0
    def _rebuild_hole_vs_j(self, x, y, r, reg):
        g = Graph()
        self.graph = g

        p = g.new_plot(xtitle='Hole (Theta)',
                       ytitle='J',
                       padding=[90, 5, 5, 40])

        p.y_axis.tick_label_formatter = lambda x: floatfmt(x, n=2, s=3)

        xs = arctan2(x, y)
        ys = reg.ys
        yserr = reg.yserr

        scatter, _ = g.new_series(xs,
                                  ys,
                                  yerror=yserr,
                                  type='scatter',
                                  marker='circle')

        ebo = ErrorBarOverlay(component=scatter, orientation='y')
        scatter.overlays.append(ebo)
        self._add_inspector(scatter)

        a = max((abs(min(xs)), abs(max(xs))))

        fxs = linspace(-a, a)

        a = r * sin(fxs)
        b = r * cos(fxs)
        pts = vstack((a, b)).T

        fys = reg.predict(pts)

        g.new_series(fxs, fys)
        g.set_x_limits(-3.2, 3.2)
Exemplo n.º 8
0
    def _update_ring_graph(self):
        self.ring_graph = g = StackedGraph()
        g.plotcontainer.spacing = 10
        g.plotcontainer.stack_order = 'top_to_bottom'

        self.deviation_graph = dg = StackedGraph()
        dg.plotcontainer.spacing = 10
        dg.plotcontainer.stack_order = 'top_to_bottom'

        self.spoke_graph = sg = StackedGraph()
        sg.plotcontainer.spacing = 10
        sg.plotcontainer.stack_order = 'top_to_bottom'

        l, h = 0, 0
        dl, dh = 0, 0
        for poss in self._group_rings():
            poss = list(poss)

            x, y, z, ze, j, je, sj, sje = self._extract_position_arrays(poss)

            fx, fy, mx, my = self.model_plane(x, y, z, ze)

            x = arctan2(x, y)
            plot = g.new_plot(padding_left=100,
                              padding_top=20,
                              padding_right=10,
                              padding_bottom=30)

            s = g.new_series(x, z, yerror=ze, type='scatter')[0]
            ebo = ErrorBarOverlay(component=s, orientation='y')

            s.underlays.append(ebo)

            g.new_series(x, j, color='green')
            # g.new_series(x, sj)
            g.new_series(fx, fy, color='blue')

            l = min(min(x), l)
            h = max(max(x), h)

            plot = dg.new_plot(padding_left=100,
                               padding_top=20,
                               padding_right=10,
                               padding_bottom=30)

            ds = (j - z) / z * 100
            ds2 = (my - z) / z * 100

            # dg.new_series(x, (my-j)/j*100)
            dg.new_series(x, ds, color='green')
            dg.new_series(mx, ds2, color='blue')

            dl = min(min(ds), dl)
            dh = max(max(ds), dh)

        for i, p in enumerate(g.plots):
            g.set_x_limits(l, h, plotid=i, pad='0.05')

            dg.set_x_limits(l, h, plotid=i, pad='0.05')
            dg.set_y_limits(dl, dh, plotid=i, pad='0.05')

        for spoke, poss in self._group_spokes():
            print(spoke)
            x, y, z, ze, j, je, sj, sje = self._extract_position_arrays(poss)
            x = (x**2 + y**2)**0.5
            plot = sg.new_plot(padding_left=100,
                               padding_top=20,
                               padding_right=10,
                               padding_bottom=30)

            s = sg.new_series(x, z, yerror=ze, type='scatter')[0]
            ebo = ErrorBarOverlay(component=s, orientation='y')

            s.underlays.append(ebo)
            sg.new_series(x, j, color='green')
Exemplo n.º 9
0
    def _graph_grid(self, x, y, z, ze, r, reg, refresh):
        self.min_j = min(z)
        self.max_j = max(z)

        g = self.graph
        layout = FigureLayout(fixed='filled_grid')
        nrows, ncols = layout.calculate(len(x))

        if not isinstance(g, Graph):
            g = RegressionGraph(container_dict={
                'bgcolor': 'gray',
                'kind': 'g',
                'shape': (nrows, ncols)
            })
            self.graph = g

        def get_ip(xi, yi):
            return next((ip for ip in self.monitor_positions
                         if ((ip.x - xi)**2 + (ip.y - yi)**2)**0.5 < 0.01),
                        None)

        opt = self.plotter_options
        monage = opt.monitor_age * 1e6
        lk = opt.lambda_k
        ans = self._analyses[0]
        scale = opt.flux_scalar
        for r in range(nrows):
            for c in range(ncols):
                idx = c + ncols * r

                if refresh:
                    try:
                        yy = z[idx] * scale
                        ye = ze[idx] * scale
                    except IndexError:
                        continue
                    # if hasattr(g, 'rules'):
                    #     if idx in g.rules:
                    #         l1, l2, l3 = g.rules[idx]
                    #         l1.value = yy
                    #         l2.value = yy + ye
                    #         l3.value = yy - ye

                else:
                    plot = g.new_plot(padding_left=65,
                                      padding_right=5,
                                      padding_top=30,
                                      padding_bottom=5)
                    try:
                        ip = get_ip(x[idx], y[idx])
                    except IndexError:
                        continue

                    add_axes_tools(g, plot)
                    yy = z[idx] * scale
                    ye = ze[idx] * scale
                    plot.title = 'Identifier={} Position={}'.format(
                        ip.identifier, ip.hole_id)

                    plot.x_axis.visible = False
                    if c == 0 and r == nrows // 2:
                        plot.y_axis.title = 'J x{}'.format(scale)

                    if not ip.use:
                        continue

                    # get ip via x,y
                    ais = [
                        a for a in ans if a.irradiation_position == ip.hole_id
                    ]
                    n = len(ais)

                    # plot mean value
                    # l1 = g.add_horizontal_rule(yy, color='black', line_style='solid', plotid=idx)
                    # l2 = g.add_horizontal_rule(yy + ye, plotid=idx)
                    # l3 = g.add_horizontal_rule(yy - ye, plotid=idx)
                    # rs = (l1, l2, l3)
                    # d = {idx: rs}
                    # if hasattr(g, 'rules'):
                    #     g.rules.update(d)
                    # else:
                    #     g.rules = d

                    # plot individual analyses
                    fs = [a.model_j(monage, lk) * scale for a in ais]
                    fs = sorted(fs)
                    iys = array([nominal_value(fi) for fi in fs])
                    ies = array([std_dev(fi) for fi in fs])

                    if self.plotter_options.use_weighted_fit:
                        fit = 'weighted mean'
                    else:
                        fit = 'average'

                    ek = self.plotter_options.error_kind
                    if ek == MSEM:
                        ek = 'msem'

                    fit = '{}_{}'.format(fit, ek)

                    p_, s, l_ = g.new_series(linspace(0, n - 1, n),
                                             iys,
                                             yerror=ies,
                                             type='scatter',
                                             fit=fit,
                                             add_point_inspector=False,
                                             add_inspector=False,
                                             marker='circle',
                                             marker_size=3)
                    g.set_x_limits(0, n - 1, pad='0.1', plotid=idx)
                    g.set_y_limits(min(iys - ies),
                                   max(iys + ies),
                                   pad='0.1',
                                   plotid=idx)
                    g.add_statistics(plotid=idx)

                    ebo = ErrorBarOverlay(component=s, orientation='y')
                    s.underlays.append(ebo)
                    s.error_bars = ebo

                    add_analysis_inspector(s, ais)
                    s.index.on_trait_change(
                        self._grid_update_graph_metadata(ais),
                        'metadata_changed')
                    self.suppress_metadata_change = True
                    sel = [i for i, a in enumerate(ais) if a.is_omitted()]
                    s.index.metadata['selections'] = sel
                    self.suppress_metadata_change = False
        g.refresh()
Exemplo n.º 10
0
    def _graph_hole_vs_j(self, x, y, r, reg, refresh):

        if self._individual_analyses_enabled:
            sel = [
                i for i, (a, x, y, e) in enumerate(zip(*self._analyses))
                if a.is_omitted()
            ]

        g = self.graph
        if not isinstance(g, Graph):
            g = Graph(container_dict={'bgcolor': self.plotter_options.bgcolor})
            self.graph = g

        po = self.plotter_options

        ys = reg.ys
        xs = arctan2(x, y)

        yserr = reg.yserr
        lyy = ys - yserr
        uyy = ys + yserr
        a = max((abs(min(xs)), abs(max(xs))))
        fxs = linspace(-a, a, 200)

        a = r * sin(fxs)
        b = r * cos(fxs)
        pts = vstack((a, b)).T
        fys = reg.predict(pts)

        use_ee = False
        if po.model_kind not in (MATCHING, BRACKETING, NN):
            use_ee = True
            try:
                l, u = reg.calculate_error_envelope(fxs, rmodel=fys)
            except BaseException:
                l, u = reg.calculate_error_envelope(pts, rmodel=fys)

        if not refresh:
            g.clear()
            p = g.new_plot(
                xtitle='Hole (Theta)',
                ytitle='J',
                # padding=[90, 5, 5, 40],
                padding=po.get_paddings())
            p.bgcolor = po.plot_bgcolor

            add_axes_tools(g, p)

            def label_fmt(xx):
                return floatfmt(xx, n=2, s=4, use_scientific=True)

            p.y_axis.tick_label_formatter = label_fmt

            # plot fit line
            # plot0 == line

            if po.model_kind in (MATCHING, BRACKETING, NN):
                g.new_series(fxs, fys, render_style='connectedhold')
            else:
                line, _p = g.new_series(fxs, fys)
                if use_ee:
                    ee = ErrorEnvelopeOverlay(component=line,
                                              xs=fxs,
                                              lower=l,
                                              upper=u)
                    line.error_envelope = ee
                    line.underlays.append(ee)

            miy = 100
            may = -1

            if self._individual_analyses_enabled:
                # plot the individual analyses
                # plot1 == scatter
                iscatter, iys = self._graph_individual_analyses()
                miy = min(iys)
                may = max(iys)

            # plot means
            # plot2 == scatter
            scatter, _ = g.new_series(xs,
                                      ys,
                                      yerror=yserr,
                                      type='scatter',
                                      marker_size=4,
                                      marker='diamond')

            ebo = ErrorBarOverlay(component=scatter, orientation='y')
            scatter.underlays.append(ebo)
            scatter.error_bars = ebo

            add_inspector(scatter, self._additional_info)

            ymi = min(lyy.min(), miy)
            yma = max(uyy.max(), may)
            g.set_x_limits(-3.5, 3.5)
            g.set_y_limits(ymi, yma, pad='0.1')

            if self._individual_analyses_enabled:
                # set metadata last because it will trigger a refresh
                self.suppress_metadata_change = True
                iscatter.index.metadata['selections'] = sel
                self.suppress_metadata_change = False

            if self._individual_analyses_enabled:
                # add a legend
                labels = [
                    ('plot1', 'Individual'),
                    ('plot2', 'Mean'),
                    ('plot0', 'Fit'),
                ]
            else:
                labels = [('plot0', 'Mean')]

            legend = ExplicitLegend(plots=self.graph.plots[0].plots,
                                    labels=labels)
            p.overlays.append(legend)

        else:
            plot = g.plots[0]
            s1 = plot.plots['plot2'][0]
            s1.yerror.set_data(yserr)
            s1.error_bars.invalidate()

            g.set_data(ys, plotid=0, series=2, axis=1)

            l1 = plot.plots['plot0'][0]
            l1.index.metadata['selections'] = sel
            g.set_data(fys, plotid=0, series=0, axis=1)

            if use_ee:
                l1.error_envelope.trait_set(xs=fxs, lower=l, upper=u)
                l1.error_envelope.invalidate()

        self.max_j = fys.max()
        self.min_j = fys.min()
Exemplo n.º 11
0
    def _graph_linear_j(self, x, y, r, reg, refresh):

        g = self.graph
        if not isinstance(g, RegressionGraph):
            g = RegressionGraph(
                container_dict={'bgcolor': self.plotter_options.bgcolor})
            self.graph = g

        po = self.plotter_options
        g.clear()

        plot = g.new_plot(padding=po.get_paddings())
        if po.model_kind == WEIGHTED_MEAN_1D:
            fit = 'weighted mean'
        else:
            fit = po.least_squares_fit

        _, scatter, line = g.new_series(x=reg.xs,
                                        y=reg.ys,
                                        yerror=reg.yserr,
                                        fit=fit)
        ebo = ErrorBarOverlay(component=scatter, orientation='y')
        scatter.underlays.append(ebo)
        scatter.error_bars = ebo

        add_inspector(scatter, self._additional_info)

        add_axes_tools(g, plot)

        g.set_x_title(po.one_d_axis)
        g.set_y_title('J')

        g.add_statistics()

        miy = 100
        may = -1

        if self._individual_analyses_enabled:
            sel = [
                i for i, (a, x, y, e) in enumerate(zip(*self._analyses))
                if a.is_omitted()
            ]

            # plot the individual analyses
            iscatter, iys = self._graph_individual_analyses(fit=None,
                                                            add_tools=False)
            miy = min(iys)
            may = max(iys)

            # set metadata last because it will trigger a refresh
            self.suppress_metadata_change = True
            iscatter.index.metadata['selections'] = sel
            self.suppress_metadata_change = False

        g.set_y_limits(min_=miy, max_=may, pad='0.1')
        g.set_x_limits(pad='0.1')

        g.refresh()

        fys = line.value.get_data()
        self.max_j = fys.max()
        self.min_j = fys.min()
Exemplo n.º 12
0
    def _graph_contour(self, x, y, z, r, reg, refresh):
        cg = self.graph
        if not isinstance(cg, FluxVisualizationGraph):
            cg = FluxVisualizationGraph(container_dict={
                'kind': 'h',
                'bgcolor': self.plotter_options.bgcolor
            })
            self.graph = cg
        else:
            cg.clear()

        center_plot = cg.new_plot(xtitle='X',
                                  ytitle='Y',
                                  add=False,
                                  padding=0,
                                  width=550,
                                  height=550,
                                  resizable='',
                                  aspect_ratio=1)

        ito = IrradiationTrayOverlay(component=center_plot,
                                     geometry=self.geometry,
                                     show_labels=self.show_labels)
        self.irradiation_tray_overlay = ito
        center_plot.overlays.append(ito)

        gx, gy, m, me = self._model_flux(reg, r)
        # self._visualization_update(gx, gy, m, me, reg.xs, reg.ys)

        r = r * 1.1
        s, p = cg.new_series(z=m,
                             xbounds=(-r, r),
                             ybounds=(-r, r),
                             levels=self.levels,
                             cmap=self.color_map_name,
                             colorbar=True,
                             style='contour')

        # add data tool
        def predict_func(ptx, pty):
            return floatfmt(reg.predict([(ptx, pty)])[0],
                            n=2,
                            use_scientific=True,
                            s=6)

        dt = DataTool(plot=s,
                      filter_components=False,
                      predict_value_func=predict_func,
                      use_date_str=False,
                      component=p)
        dto = DataToolOverlay(component=p, tool=dt)
        p.tools.append(dt)
        p.overlays.append(dto)

        # add slice inspectors
        cg.add_inspectors(s)

        # add 1D slices
        bottom_plot = cg.new_plot(add=False,
                                  height=175,
                                  resizable='h',
                                  padding=0,
                                  xtitle='mm',
                                  ytitle='J')

        right_plot = cg.new_plot(
            add=False,
            width=175,
            resizable='v',
            padding=0,
            # xtitle='J',
            ytitle='mm')

        center = center_plot.plots['plot0'][0]
        options = dict(style='cmap_scatter',
                       type='cmap_scatter',
                       marker='circle',
                       color_mapper=center.color_mapper)

        cg.new_series(plotid=1, render_style='connectedpoints')
        cg.new_series(plotid=1, **options)
        s = cg.new_series(plotid=1,
                          type='scatter',
                          marker_size=2,
                          color='red',
                          style='xy',
                          marker='circle')[0]
        ebo = ErrorBarOverlay(component=s,
                              orientation='y',
                              use_component=False)
        s.underlays.append(ebo)
        x, y = reg.xs.T
        ebo.index, ebo.value, ebo.error = x, reg.ys, reg.yserr
        cg.bottom_error_bars = ebo

        center_plot.x_axis.orientation = 'top'

        right_plot.orientation = 'v'
        right_plot.x_axis.orientation = 'top'
        right_plot.x_axis.tick_label_rotate_angle = 45
        right_plot.y_axis.orientation = 'right'
        right_plot.x_axis.axis_line_visible = False
        right_plot.y_axis.axis_line_visible = False

        s = cg.new_series(plotid=2, render_style='connectedpoints')[0]
        s.orientation = 'v'
        s = cg.new_series(plotid=2, **options)[0]
        s.orientation = 'v'
        ss = cg.new_series(plotid=2,
                           type='scatter',
                           marker_size=2,
                           color='red',
                           style='xy',
                           marker='circle')[0]
        ss.orientation = 'v'

        ebo = ErrorBarOverlay(component=ss,
                              orientation='x',
                              use_component=False)
        ss.underlays.append(ebo)
        x, y = reg.xs.T
        ebo.index, ebo.value, ebo.error = y, reg.ys, reg.yserr
        cg.right_error_bars = ebo

        center.index.on_trait_change(cg.metadata_changed, 'metadata_changed')

        gridcontainer = container_factory(
            kind='g',
            # fill_padding=True,
            # bgcolor='red',
            padding_left=100,
            padding_right=20,
            padding_top=100,
            padding_bottom=40,
            shape=(2, 2),
            spacing=(5, 5))

        gridcontainer.add(center_plot)
        gridcontainer.add(right_plot)
        gridcontainer.add(bottom_plot)

        # cb = cg.make_colorbar(center)
        # cb.width = 50
        # cb.padding_left = 50
        # cg.plotcontainer.add(cb)

        # plot means
        s = cg.new_series(x,
                          y,
                          z=z,
                          style='cmap_scatter',
                          color_mapper=s.color_mapper,
                          marker='circle',
                          marker_size=self.marker_size)

        cg.errors = reg.yserr
        cg.x = reg.xs
        cg.y = reg.ys

        cg.plotcontainer.add(gridcontainer)
Exemplo n.º 13
0
    def _graph_hole_vs_j(self, x, y, r, reg, refresh):

        sel = [i for i, a in enumerate(self.analyses) if a.is_omitted()]

        g = self.graph
        if not isinstance(g, Graph):
            g = Graph(container_dict={'bgcolor': self.plotter_options.bgcolor})
            self.graph = g

        po = self.plotter_options

        xs = arctan2(x, y)
        ys = reg.ys
        a = max((abs(min(xs)), abs(max(xs))))
        fxs = linspace(-a, a)

        a = r * sin(fxs)
        b = r * cos(fxs)
        pts = vstack((a, b)).T

        fys = reg.predict(pts)
        yserr = reg.yserr
        l, u = reg.calculate_error_envelope([[p] for p in pts], rmodel=fys)

        lyy = ys - yserr
        uyy = ys + yserr

        if not refresh:
            g.clear()
            p = g.new_plot(xtitle='Hole (Theta)',
                           ytitle='J',
                           # padding=[90, 5, 5, 40],
                           padding=po.paddings())
            p.bgcolor = po.plot_bgcolor

            p.y_axis.tick_label_formatter = lambda x: floatfmt(x, n=2, s=4, use_scientific=True)

            scatter, _ = g.new_series(xs, ys,
                                      yerror=yserr,
                                      type='scatter', marker='circle')

            ebo = ErrorBarOverlay(component=scatter,
                                  orientation='y')
            scatter.overlays.append(ebo)
            scatter.error_bars = ebo

            add_inspector(scatter, self._additional_info)
            line, _p = g.new_series(fxs, fys)

            ee = ErrorEnvelopeOverlay(component=line,
                                      xs=fxs, lower=l, upper=u)
            line.error_envelope = ee
            line.overlays.append(ee)

            # plot the individual analyses
            s, iys = self._graph_individual_analyses()
            s.index.metadata['selections'] = sel
            # s.index.metadata_changed = True

            ymi = min(lyy.min(), min(iys))
            yma = max(uyy.max(), max(iys))
            g.set_x_limits(-3.2, 3.2)

        else:
            plot = g.plots[0]

            s1 = plot.plots['plot0'][0]
            s1.yerror.set_data(yserr)
            s1.error_bars.invalidate()

            l1 = plot.plots['plot1'][0]
            l1.error_envelope.trait_set(xs=fxs, lower=l, upper=u)
            l1.error_envelope.invalidate()

            g.set_data(ys, plotid=0, series=0, axis=1)
            g.set_data(fys, plotid=0, series=1, axis=1)

            s2 = plot.plots['plot2'][0]
            iys = s2.value.get_data()
            ymi = min(fys.min(), lyy.min(), iys.min())
            yma = max(fys.max(), uyy.max(), iys.max())

            s2.index.metadata['selections'] = sel

        g.set_y_limits(ymi, yma, pad='0.1')
        self._model_sin_flux(fxs, fys)
Exemplo n.º 14
0
    def _graph_contour(self, x, y, z, r, reg, refresh):
        cg = self.graph
        if not isinstance(cg, FluxVisualizationGraph):
            cg = FluxVisualizationGraph(container_dict={'kind': 'h',
                                                        'bgcolor': self.plotter_options.bgcolor})
            self.graph = cg
        else:
            cg.clear()

        center_plot = cg.new_plot(xtitle='X', ytitle='Y', add=False,
                                  padding=0,
                                  width=550,
                                  height=550,
                                  resizable='',
                                  aspect_ratio=1)

        ito = IrradiationTrayOverlay(component=center_plot,
                                     geometry=self.geometry,
                                     show_labels=self.show_labels)
        self.irradiation_tray_overlay = ito
        center_plot.overlays.append(ito)

        gx, gy, m, me = self._model_flux(reg, r)
        # self._visualization_update(gx, gy, m, me, reg.xs, reg.ys)

        r = r * 1.1
        s, p = cg.new_series(z=m,
                             xbounds=(-r, r),
                             ybounds=(-r, r),
                             levels=self.levels,
                             cmap=self.color_map_name,
                             colorbar=True,
                             style='contour')

        # add data tool
        def predict_func(ptx, pty):
            return floatfmt(reg.predict([(ptx, pty)])[0], n=2, use_scientific=True, s=6)

        dt = DataTool(plot=s,
                      filter_components=False,
                      predict_value_func=predict_func,
                      use_date_str=False, component=p)
        dto = DataToolOverlay(component=p, tool=dt)
        p.tools.append(dt)
        p.overlays.append(dto)

        # add slice inspectors
        cg.add_inspectors(s)

        # add 1D slices
        bottom_plot = cg.new_plot(add=False,
                                  height=175,
                                  resizable='h',
                                  padding=0,
                                  xtitle='mm',
                                  ytitle='J')

        right_plot = cg.new_plot(add=False,
                                 width=175,
                                 resizable='v',
                                 padding=0,
                                 # xtitle='J',
                                 ytitle='mm')

        center = center_plot.plots['plot0'][0]
        options = dict(style='cmap_scatter',
                       type='cmap_scatter',
                       marker='circle',
                       color_mapper=center.color_mapper)

        cg.new_series(plotid=1, render_style='connectedpoints')
        cg.new_series(plotid=1, **options)
        s = cg.new_series(plotid=1, type='scatter',
                          marker_size=2,
                          color='red', style='xy', marker='circle')[0]
        ebo = ErrorBarOverlay(component=s, orientation='y', use_component=False)
        s.underlays.append(ebo)
        x, y = reg.xs.T
        ebo.index, ebo.value, ebo.error = x, reg.ys, reg.yserr
        cg.bottom_error_bars = ebo

        center_plot.x_axis.orientation = 'top'

        right_plot.orientation = 'v'
        right_plot.x_axis.orientation = 'top'
        right_plot.x_axis.tick_label_rotate_angle = 45
        right_plot.y_axis.orientation = 'right'
        right_plot.x_axis.axis_line_visible = False
        right_plot.y_axis.axis_line_visible = False

        s = cg.new_series(plotid=2, render_style='connectedpoints')[0]
        s.orientation = 'v'
        s = cg.new_series(plotid=2, **options)[0]
        s.orientation = 'v'
        ss = cg.new_series(plotid=2, type='scatter',
                           marker_size=2,
                           color='red', style='xy', marker='circle')[0]
        ss.orientation = 'v'

        ebo = ErrorBarOverlay(component=ss, orientation='x', use_component=False)
        ss.underlays.append(ebo)
        x, y = reg.xs.T
        ebo.index, ebo.value, ebo.error = y, reg.ys, reg.yserr
        cg.right_error_bars = ebo

        center.index.on_trait_change(cg.metadata_changed, 'metadata_changed')

        gridcontainer = container_factory(kind='g',
                                          # fill_padding=True,
                                          # bgcolor='red',
                                          padding_left=100,
                                          padding_right=20,
                                          padding_top=100,
                                          padding_bottom=40,
                                          shape=(2, 2),
                                          spacing=(5, 5))

        gridcontainer.add(center_plot)
        gridcontainer.add(right_plot)
        gridcontainer.add(bottom_plot)

        # cb = cg.make_colorbar(center)
        # cb.width = 50
        # cb.padding_left = 50
        # cg.plotcontainer.add(cb)

        # plot means
        s = cg.new_series(x, y,
                          z=z,
                          style='cmap_scatter',
                          color_mapper=s.color_mapper,
                          marker='circle',
                          marker_size=self.marker_size)

        cg.errors = reg.yserr
        cg.x = reg.xs
        cg.y = reg.ys

        cg.plotcontainer.add(gridcontainer)