Exemplo n.º 1
0
 def open(self):
     make_directory(self.trace_dir)
     
     self.alpha_writer = ConcentrationParameterWriter(self.trace_dir)
     
     self.labels_writer = LabelsWriter(self.trace_dir, self.mutation_ids)
     
     self.cellular_frequency_writers = {}
     
     for sample_id in self.sample_ids:
         self.cellular_frequency_writers[sample_id] = CellularFrequenciesWriter(self.trace_dir, 
                                                                                sample_id, 
                                                                                self.mutation_ids)
     
     if self.update_precision:
         self.precision_writer = PrecisionWriter(self.trace_dir)
Exemplo n.º 2
0
    def open(self):
        make_directory(self.trace_dir)

        self.alpha_writer = ConcentrationParameterWriter(self.trace_dir)

        self.labels_writer = LabelsWriter(self.trace_dir, self.mutation_ids)

        self.cellular_frequency_writers = {}

        for sample_id in self.sample_ids:
            self.cellular_frequency_writers[
                sample_id] = CellularFrequenciesWriter(self.trace_dir,
                                                       sample_id,
                                                       self.mutation_ids)

        if self.update_precision:
            self.precision_writer = PrecisionWriter(self.trace_dir)
Exemplo n.º 3
0
def _setup_analysis(config_extras_file, density, in_files, init_method,
                    num_iters, samples, prior, tumour_contents, working_dir):

    make_directory(working_dir)

    make_directory(os.path.join(working_dir, 'yaml'))

    mutations_files = OrderedDict()

    _tumour_contents = {}

    for i, in_file in enumerate(in_files):
        if samples is not None:
            sample_id = samples[i]

        else:
            sample_id = os.path.splitext(os.path.basename(in_file))[0]

        mutations_files[sample_id] = os.path.join(working_dir, 'yaml',
                                                  '{0}.yaml'.format(sample_id))

        _build_mutations_file(in_file, mutations_files[sample_id], prior)

        if tumour_contents is not None:
            _tumour_contents[sample_id] = tumour_contents[i]

        else:
            _tumour_contents[sample_id] = 1.0

    config_file = os.path.join(working_dir, 'config.yaml')

    _write_config_file(
        config_file=config_file,
        density=density,
        init_method=init_method,
        mutations_files=mutations_files,
        num_iters=num_iters,
        tumour_contents=_tumour_contents,
        working_dir=working_dir,
        config_extras_file=config_extras_file,
    )

    return config_file
Exemplo n.º 4
0
    def open(self):
        make_directory(paths.get_trace_dir(self.config_file))

        self.alpha_writer = ConcentrationParameterWriter(paths.get_concentration_trace_file(self.config_file))

        self.labels_writer = LabelsWriter(
            paths.get_labels_trace_file(self.config_file),
            self.mutation_ids
        )

        self.cellular_frequency_writers = {}

        for sample_id, file_name in paths.get_cellular_prevalence_trace_files(self.config_file).items():
            self.cellular_frequency_writers[sample_id] = CellularFrequenciesWriter(
                file_name,
                self.mutation_ids,
                sample_id
            )

        if self.update_precision:
            self.precision_writer = PrecisionWriter(paths.get_precision_trace_file(self.config_file))
Exemplo n.º 5
0
def run_analysis_pipeline(args):
    config_file = _setup_analysis(
        density=args.density,
        in_files=args.in_files,
        init_method=args.init_method,
        num_iters=args.num_iters,
        samples=args.samples,
        prior=args.prior,
        tumour_contents=args.tumour_contents,
        working_dir=args.working_dir,
        config_extras_file=args.config_extras_file,
    )

    _run_analysis(config_file, args.seed)

    tables_dir = os.path.join(args.working_dir, 'tables')

    make_directory(tables_dir)

    for table_type in ['cluster', 'loci']:
        out_file = os.path.join(tables_dir, '{0}.tsv'.format(table_type))

        _build_table(config_file=config_file,
                     out_file=out_file,
                     burnin=args.burnin,
                     max_clusters=args.max_clusters,
                     mesh_size=args.mesh_size,
                     table_type=table_type,
                     thin=args.thin)

    plots_dir = os.path.join(args.working_dir, 'plots')

    plots = [('cluster', 'density'), ('cluster', 'parallel_coordinates'),
             ('cluster', 'scatter'), ('loci', 'density'),
             ('loci', 'parallel_coordinates'), ('loci', 'scatter'),
             ('loci', 'similarity_matrix'),
             ('loci', 'vaf_parallel_coordinates'), ('loci', 'vaf_scatter')]

    for category, plot_type in plots:

        plot_file = os.path.join(
            plots_dir, category, '{0}.{1}'.format(plot_type,
                                                  args.plot_file_format))

        make_parent_directory(plot_file)

        if category == 'cluster':

            _cluster_plot(config_file, plot_file, args.burnin,
                          args.max_clusters, args.mesh_size,
                          args.min_cluster_size, plot_type, args.samples,
                          args.thin)

        elif category == 'loci':

            _loci_plot(config_file,
                       plot_file,
                       plot_type,
                       burnin=args.burnin,
                       min_cluster_size=args.min_cluster_size,
                       samples=args.samples,
                       thin=args.thin)