Exemplo n.º 1
0
 def testClusteringSampleSimple1Euclidean(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    1.0, [5, 5],
                                    True,
                                    metric=distance_metric(
                                        type_metric.EUCLIDEAN))
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    10.0, [10],
                                    True,
                                    metric=distance_metric(
                                        type_metric.EUCLIDEAN))
Exemplo n.º 2
0
 def testClusteringSampleSimple1Manhattan(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    1.0, [5, 5],
                                    True,
                                    metric=distance_metric(
                                        type_metric.MANHATTAN))
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    10.0, [10],
                                    True,
                                    metric=distance_metric(
                                        type_metric.MANHATTAN))
Exemplo n.º 3
0
 def testClusteringSampleSimple1Chebyshev(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    1.0, [5, 5],
                                    True,
                                    metric=distance_metric(
                                        type_metric.CHEBYSHEV))
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    10.0, [10],
                                    True,
                                    metric=distance_metric(
                                        type_metric.CHEBYSHEV))
Exemplo n.º 4
0
 def testClusteringSampleSimple1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0,
                                    [5, 5], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10, 1.0,
                                    [5, 5], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0,
                                    [10], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, 1.0,
                                    [10], True)
Exemplo n.º 5
0
 def testTheSamePoints1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 1.0,
                                    [5, 5, 5], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 30, 1.0,
                                    [5, 5, 5], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 10.0,
                                    [15], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 1, 1.0,
                                    [15], True)
Exemplo n.º 6
0
 def testClusteringSampleSimple1EuclideanSquare(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    1.0, [5, 5],
                                    False,
                                    metric=distance_metric(
                                        type_metric.EUCLIDEAN_SQUARE))
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    10.0, [5, 5],
                                    False,
                                    metric=distance_metric(
                                        type_metric.EUCLIDEAN_SQUARE))
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1,
                                    2,
                                    100.0, [10],
                                    False,
                                    metric=distance_metric(
                                        type_metric.EUCLIDEAN_SQUARE))
Exemplo n.º 7
0
 def testThreeDimentionalPoints(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 1.0,
                                    [10, 10], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 10.0,
                                    [20], True)
Exemplo n.º 8
0
 def testClusteringSampleSimple1Manhattan(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.MANHATTAN));
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False, metric=distance_metric(type_metric.MANHATTAN));
Exemplo n.º 9
0
 def testClusteringSampleSimple3(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 2.0,
                                    [10, 10, 10, 30], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 10.0,
                                    [60], True)
Exemplo n.º 10
0
 def testOneDimentionalPoints2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 1.0,
                                    [10, 20], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 10.0,
                                    [30], True)
Exemplo n.º 11
0
 def testProcessingWhenLibraryCoreCorrupted(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], True);
Exemplo n.º 12
0
 def testClusteringSampleSimple2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 1.0, [5, 8, 10], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 10.0, [23], False);
Exemplo n.º 13
0
 def testOneDimentionalPoints1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 1.0, [10, 10], True);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 10.0, [20], True);
Exemplo n.º 14
0
 def testClusteringSampleSimple1EuclideanSquare(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 100.0, [10], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));
Exemplo n.º 15
0
 def testTheSamePoints1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 1.0, [5, 5, 5], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 30, 1.0, [5, 5, 5], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 10.0, [15], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 1, 1.0, [15], False);
Exemplo n.º 16
0
 def testTheSamePoints2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 1.0, [10, 20], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 10.0, [30], False);
Exemplo n.º 17
0
 def testThreeDimentionalPoints(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 1.0, [10, 10], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 10.0, [20], False);
Exemplo n.º 18
0
 def testOneDimentionalPoints2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 1.0, [10, 20], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 10.0, [30], False);
Exemplo n.º 19
0
 def testClusteringSampleSimple3(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 2.0, [10, 10, 10, 30], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 10.0, [60], False);
Exemplo n.º 20
0
 def testTheSamePoints2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 1.0,
                                    [10, 20], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 10.0,
                                    [30], True)
Exemplo n.º 21
0
 def testOneDimentionalPoints1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 1.0, [10, 10], True);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 10.0, [20], True);
Exemplo n.º 22
0
 def testProcessingWhenLibraryCoreCorrupted(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0,
                                    [5, 5], True)
Exemplo n.º 23
0
 def runRemovedLibraryCoreTest(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], True)
Exemplo n.º 24
0
 def testClusteringSampleSimple1(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10, 1.0, [5, 5], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False);
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, 1.0, [10], False);
Exemplo n.º 25
0
 def testClusteringSampleSimple2(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 1.0,
                                    [5, 8, 10], True)
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 10.0,
                                    [23], True)
Exemplo n.º 26
0
 def testClusteringSampleSimple1Euclidean(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], True, metric=distance_metric(type_metric.EUCLIDEAN));
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], True, metric=distance_metric(type_metric.EUCLIDEAN));
Exemplo n.º 27
0
 def testClusteringSampleSimple1Chebyshev(self):
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.CHEBYSHEV));
     mbsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False, metric=distance_metric(type_metric.CHEBYSHEV));