Exemplo n.º 1
0
def rock(sample, eps, number_clusters, threshold):
    """
    @brief Clustering algorithm ROCK returns allocated clusters and noise that are consisted from input data. 
    @details Calculation is performed via CCORE (C/C++ part of the pyclustering)."
    
    @param[in] sample: input data - list of points where each point is represented by list of coordinates.
    @param[in] eps: connectivity radius (similarity threshold), points are neighbors if distance between them is less than connectivity radius.
    @param[in] number_clusters: defines number of clusters that should be allocated from the input data set.
    @param[in] threshold: value that defines degree of normalization that influences on choice of clusters for merging during processing.
    
    @return List of allocated clusters, each cluster contains indexes of objects in list of data.
    
    """
    
    pointer_data = package_builder(sample, c_double).create();

    ccore = ccore_library.get();

    ccore.rock_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.rock_algorithm(pointer_data, c_double(eps), c_size_t(number_clusters), c_double(threshold));

    list_of_clusters = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return list_of_clusters;
Exemplo n.º 2
0
def som_create(rows, cols, conn_type, parameters):
    """!
    @brief Create of self-organized map using C++ pyclustering library.
    
    @param[in] rows (uint): Number of neurons in the column (number of rows).
    @param[in] cols (uint): Number of neurons in the row (number of columns).
    @param[in] conn_type (type_conn): Type of connection between oscillators in the network (grid four, grid eight, honeycomb, function neighbour).
    @param[in] parameters (som_parameters): Other specific parameters.
    
    @return (POINTER) C-pointer to object of self-organized feature in memory.
    
    """

    ccore = ccore_library.get()

    c_params = c_som_parameters()

    c_params.init_type = parameters.init_type
    c_params.init_radius = parameters.init_radius
    c_params.init_learn_rate = parameters.init_learn_rate
    c_params.adaptation_threshold = parameters.adaptation_threshold
    c_params.random_state = parameters.random_state or -1

    ccore.som_create.restype = POINTER(c_void_p)
    som_pointer = ccore.som_create(c_uint(rows), c_uint(cols),
                                   c_uint(conn_type), pointer(c_params))

    return som_pointer
Exemplo n.º 3
0
def som_load(som_pointer, weights, award, capture_objects):
    """!
    @brief Load dump of the network to SOM.
    @details Initialize SOM using existed weights, amount of captured objects by each neuron, captured
              objects by each neuron. Initialization is not performed if weights are empty.

    @param[in] som_pointer (POINTER): pointer to object of self-organized map.
    @param[in] weights (list): weights that should assigned to neurons.
    @param[in] awards (list): amount of captured objects by each neuron.
    @param[in] capture_objects (list): captured objects by each neuron.

    """

    if len(weights) == 0:
        return

    ccore = ccore_library.get()

    package_weights = package_builder(weights, c_double).create()
    package_award = package_builder(award, c_size_t).create()
    package_capture_objects = package_builder(capture_objects,
                                              c_size_t).create()

    ccore.som_load(som_pointer, package_weights, package_award,
                   package_capture_objects)
def elbow(sample, kmin, kmax, kstep, initializer, random_state):
    random_state = random_state or -1
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    if initializer == elbow_center_initializer.KMEANS_PLUS_PLUS:
        ccore.elbow_method_ikpp.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_ikpp(pointer_data, c_size_t(kmin),
                                          c_size_t(kmax), c_size_t(kstep),
                                          c_longlong(random_state))
    elif initializer == elbow_center_initializer.RANDOM:
        ccore.elbow_method_irnd.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_irnd(pointer_data, c_size_t(kmin),
                                          c_size_t(kmax), c_size_t(kstep),
                                          c_longlong(random_state))
    else:
        raise ValueError("Not supported type of center initializer '" +
                         str(initializer) + "'.")

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    if isinstance(results, bytes):
        raise RuntimeError(results.decode('utf-8'))

    return (results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_AMOUNT][0],
            results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_WCE])
def optics(sample, radius, minimum_neighbors, amount_clusters, data_type):
    amount = amount_clusters
    if amount is None:
        amount = 0

    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)

    ccore = ccore_library.get()

    ccore.optics_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.optics_algorithm(pointer_data, c_double(radius),
                                     c_size_t(minimum_neighbors),
                                     c_size_t(amount), c_data_type)

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[optics_package_indexer.OPTICS_PACKAGE_INDEX_CLUSTERS],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_NOISE],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_ORDERING],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_RADIUS][0],
            results[optics_package_indexer.
                    OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_INDEX],
            results[optics_package_indexer.
                    OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_CORE_DISTANCE],
            results[optics_package_indexer.
                    OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_REACHABILITY_DISTANCE])
Exemplo n.º 6
0
    def __call__(self, point1, point2):
        point_package1 = package_builder(point1, c_double).create();
        point_package2 = package_builder(point2, c_double).create();

        ccore = ccore_library.get();

        ccore.metric_calculate.restype = c_double;
        return ccore.metric_calculate(self.__pointer, point_package1, point_package2);
Exemplo n.º 7
0
def cure_algorithm(sample, number_clusters, number_represent_points, compression):
    pointer_data = package_builder(sample, c_double).create();
    
    ccore = ccore_library.get();
    ccore.cure_algorithm.restype = POINTER(c_void_p);
    cure_data_pointer = ccore.cure_algorithm(pointer_data, c_size_t(number_clusters), c_size_t(number_represent_points), c_double(compression));
    
    return cure_data_pointer;
Exemplo n.º 8
0
def som_destroy(som_pointer):
    """!
    @brief Destroys self-organized map.
    
    @param[in] som_pointer (POINTER): pointer to object of self-organized map.
    
    """

    ccore = ccore_library.get()
    ccore.som_destroy(som_pointer)
Exemplo n.º 9
0
def cure_get_means(cure_data_pointer):
    ccore = ccore_library.get();
    
    ccore.cure_get_means.restype = POINTER(pyclustering_package);
    package = ccore.cure_get_means(cure_data_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Exemplo n.º 10
0
def cure_get_representors(cure_data_pointer):
    ccore = ccore_library.get()

    ccore.cure_get_representors.restype = POINTER(pyclustering_package)
    package = ccore.cure_get_representors(cure_data_pointer)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 11
0
    def __init__(self, type_metric, arguments, func):
        self.__func = lambda p1, p2: func(package_extractor(p1).extract(), package_extractor(p2).extract());

        package_arguments = package_builder(arguments, c_double).create();

        ccore = ccore_library.get();

        ccore.metric_create.restype = POINTER(c_void_p);

        self.__pointer = ccore.metric_create(c_size_t(type_metric), package_arguments, metric_callback(self.__func));
Exemplo n.º 12
0
def som_get_winner_number(som_pointer):
    """!
    @brief Returns of number of winner at the last step of learning process.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """

    ccore = ccore_library.get()
    ccore.som_get_winner_number.restype = c_size_t
    return ccore.som_get_winner_number(som_pointer)
Exemplo n.º 13
0
def agglomerative_algorithm(data, number_clusters, link):
    pointer_data = package_builder(data, c_double).create();

    ccore = ccore_library.get();
    ccore.agglomerative_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.agglomerative_algorithm(pointer_data, c_size_t(number_clusters), c_size_t(link));

    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);

    return result;
Exemplo n.º 14
0
def som_get_size(som_pointer):
    """!
    @brief Returns size of self-organized map (number of neurons).
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """

    ccore = ccore_library.get()
    ccore.som_get_size.restype = c_size_t
    return ccore.som_get_size(som_pointer)
Exemplo n.º 15
0
def ttsas(sample, threshold1, threshold2, metric_pointer):
    pointer_data = package_builder(sample, c_double).create();

    ccore = ccore_library.get();

    ccore.ttsas_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.ttsas_algorithm(pointer_data, c_double(threshold1), c_double(threshold2), metric_pointer);

    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);

    return result[0], result[1];
Exemplo n.º 16
0
def bsas(sample, amount, threshold, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.bsas_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.bsas_algorithm(pointer_data, c_size_t(amount), c_double(threshold), metric_pointer)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1]
Exemplo n.º 17
0
def silhoeutte(sample, clusters, pointer_metric):
    pointer_data = package_builder(sample, c_double).create()
    pointer_clusters = package_builder(clusters, c_size_t).create()

    ccore = ccore_library.get()
    ccore.silhouette_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_algorithm(pointer_data, pointer_clusters, pointer_metric)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 18
0
def kmeans(sample, centers, tolerance, observe):
    pointer_data = package_builder(sample, c_double).create();
    pointer_centers = package_builder(centers, c_double).create();
    
    ccore = ccore_library.get();
    
    ccore.kmeans_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.kmeans_algorithm(pointer_data, pointer_centers, c_double(tolerance), c_bool(observe));
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Exemplo n.º 19
0
def fcm_algorithm(sample, centers, m, tolerance, itermax):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()

    ccore = ccore_library.get()

    ccore.fcm_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.fcm_algorithm(pointer_data, pointer_centers, c_double(m), c_double(tolerance), c_size_t(itermax))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 20
0
def silhoeutte_ksearch(sample, kmin, kmax, allocator):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    ccore.silhouette_ksearch_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_ksearch_algorithm(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(allocator))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_AMOUNT][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORE][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORES])
Exemplo n.º 21
0
def silhoeutte_ksearch(sample, kmin, kmax, allocator):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    ccore.silhouette_ksearch_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_ksearch_algorithm(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(allocator))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_AMOUNT][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORE][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORES])
Exemplo n.º 22
0
def gmeans(sample, amount, tolerance, repeat):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.gmeans_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.gmeans_algorithm(pointer_data, c_size_t(amount),
                                     c_double(tolerance), c_size_t(repeat))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1], result[2][0]
def xmeans(sample, centers, kmax, tolerance, criterion):
    pointer_data = package_builder(sample, c_double).create();
    pointer_centers = package_builder(centers, c_double).create();
    
    ccore = ccore_library.get();
    
    ccore.xmeans_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion));
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result[0], result[1];
Exemplo n.º 24
0
def silhoeutte(sample, clusters, pointer_metric):
    pointer_data = package_builder(sample, c_double).create()
    pointer_clusters = package_builder(clusters, c_size_t).create()

    ccore = ccore_library.get()
    ccore.silhouette_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_algorithm(pointer_data, pointer_clusters,
                                         pointer_metric)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 25
0
def kmedians(sample, centers, tolerance, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()
    
    ccore = ccore_library.get()
    
    ccore.kmedians_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedians_algorithm(pointer_data, pointer_centers, c_double(tolerance), metric_pointer)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    return result
Exemplo n.º 26
0
def xmeans(sample, centers, kmax, tolerance, criterion):
    pointer_data = package_builder(sample, c_double).create();
    pointer_centers = package_builder(centers, c_double).create();
    
    ccore = ccore_library.get();
    
    ccore.xmeans_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion));
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result[0], result[1];
Exemplo n.º 27
0
def kmedians(sample, centers, tolerance, itermax, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()
    
    ccore = ccore_library.get()
    
    ccore.kmedians_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedians_algorithm(pointer_data, pointer_centers, c_double(tolerance), c_size_t(itermax), metric_pointer)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    return result[0], result[1]
Exemplo n.º 28
0
def kmedoids(sample, medoids, tolerance, itermax, metric_pointer, data_type):
    pointer_data = package_builder(sample, c_double).create()
    medoids_package = package_builder(medoids, c_size_t).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.kmedoids_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedoids_algorithm(pointer_data, medoids_package, c_double(tolerance), c_size_t(itermax), metric_pointer, c_data_type)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1]
Exemplo n.º 29
0
def fcm_algorithm(sample, centers, m, tolerance, itermax):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()

    ccore = ccore_library.get()

    ccore.fcm_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.fcm_algorithm(pointer_data, pointer_centers, c_double(m),
                                  c_double(tolerance), c_size_t(itermax))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 30
0
def kmedoids(sample, medoids, tolerance):
    pointer_data = package_builder(sample, c_double).create()
    medoids_package = package_builder(medoids, c_size_t).create()

    ccore = ccore_library.get()

    ccore.kmedoids_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedoids_algorithm(pointer_data, medoids_package,
                                       c_double(tolerance))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Exemplo n.º 31
0
def kmedoids(sample, medoids, tolerance, itermax, metric_pointer, data_type):
    pointer_data = package_builder(sample, c_double).create()
    medoids_package = package_builder(medoids, c_size_t).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.kmedoids_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedoids_algorithm(pointer_data, medoids_package, c_double(tolerance), c_size_t(itermax), metric_pointer, c_data_type)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1], result[2][0], result[3][0]
Exemplo n.º 32
0
def som_get_neighbors(som_pointer):
    """!
    @brief Returns list of indexes of neighbors of each neuron.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """

    ccore = ccore_library.get()

    ccore.som_get_neighbors.restype = POINTER(pyclustering_package)
    package = ccore.som_get_neighbors(som_pointer)

    result = package_extractor(package).extract()
    return result
Exemplo n.º 33
0
def som_get_awards(som_pointer):
    """!
    @brief Returns list of amount of captured objects by each neuron.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """

    ccore = ccore_library.get()

    ccore.som_get_awards.restype = POINTER(pyclustering_package)
    package = ccore.som_get_awards(som_pointer)

    result = package_extractor(package).extract()
    return result
Exemplo n.º 34
0
def dbscan(sample, eps, min_neighbors, data_type):
    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.dbscan_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.dbscan_algorithm(pointer_data, c_double(eps), c_size_t(min_neighbors), c_data_type)

    list_of_clusters = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    noise = list_of_clusters[len(list_of_clusters) - 1]
    list_of_clusters.remove(noise)

    return list_of_clusters, noise
Exemplo n.º 35
0
def pam_build(sample, amount, pointer_metric, data_type):
    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)

    ccore = ccore_library.get()
    ccore.pam_build_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.pam_build_algorithm(pointer_data, c_size_t(amount),
                                        pointer_metric, c_data_type)

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    if isinstance(results, bytes):
        raise RuntimeError(results.decode('utf-8'))

    return results[0]
Exemplo n.º 36
0
def dbscan(sample, eps, min_neighbors, data_type):
    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.dbscan_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.dbscan_algorithm(pointer_data, c_double(eps), c_size_t(min_neighbors), c_data_type)

    list_of_clusters = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    noise = list_of_clusters[len(list_of_clusters) - 1]
    list_of_clusters.remove(noise)

    return list_of_clusters, noise
Exemplo n.º 37
0
def gmeans(sample, kinit, tolerance, repeat, kmax, random_state):
    random_state = random_state or -1
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.gmeans_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.gmeans_algorithm(pointer_data, c_size_t(kinit),
                                     c_double(tolerance), c_size_t(repeat),
                                     c_longlong(kmax),
                                     c_longlong(random_state))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1], result[2][0]
Exemplo n.º 38
0
def clique(sample, intervals, threshold):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.clique_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.clique_algorithm(pointer_data, c_size_t(intervals), c_size_t(threshold))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_CLUSTERS],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_NOISE],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_LOGICAL_LOCATION],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MAX_CORNER],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MIN_CORNER],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_BLOCK_POINTS])
Exemplo n.º 39
0
def optics(sample, radius, minimum_neighbors, amount_clusters, data_type):
    amount = amount_clusters
    if amount is None:
        amount = 0

    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.optics_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.optics_algorithm(pointer_data, c_double(radius), c_size_t(minimum_neighbors), c_size_t(amount), c_data_type)

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[optics_package_indexer.OPTICS_PACKAGE_INDEX_CLUSTERS], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_NOISE], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_ORDERING],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_RADIUS][0],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_INDEX],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_CORE_DISTANCE],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_REACHABILITY_DISTANCE])
Exemplo n.º 40
0
def cure_data_destroy(cure_data_pointer):
    ccore = ccore_library.get();
    ccore.cure_data_destroy(cure_data_pointer);