Exemplo n.º 1
0
def test_lr():
    W = ad.Variable(name="W")
    b = ad.Variable(name="b")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    ctx = ndarray.gpu(0)
    # ini
    x_val = np.linspace(0, 1, 100).reshape((100, 1))
    y_val = x_val + 0.5
    W_val = np.array([[0.1]])
    b_val = np.array([0.1])
    x_val = ndarray.array(x_val, ctx)
    W_val = ndarray.array(W_val, ctx)
    b_val = ndarray.array(b_val, ctx)
    y_val = ndarray.array(y_val, ctx)
    z = ad.matmul_op(X, W)
    # z.shape = (100,1)
    # b.shape = (1,1)
    y = z + ad.broadcastto_op(b, z)
    # y = (100,1)
    y = ad.fullyactivation_forward_op(y, "NCHW", "relu")
    loss = ad.matmul_op(y + (-1) * y_, y + (-1) * y_, trans_A=True) * (1 / 100)
    # loss = ad.softmaxcrossentropy_op(y, y_)
    grad_W, grad_b = ad.gradients(loss, [W, b])

    executor = ad.Executor([loss, grad_W, grad_b], ctx)

    aph = 1e-6

    for i in range(100):

        loss_val, grad_W_val, grad_b_val = executor.run(feed_dict={
            X: x_val,
            b: b_val,
            W: W_val,
            y_: y_val
        })

        grad_W_val = grad_W_val.asnumpy()
        W_val = W_val.asnumpy()
        W_val = W_val - aph * grad_W_val
        W_val = ndarray.array(W_val, ctx)

        grad_b_val = grad_b_val.asnumpy()
        b_val = b_val.asnumpy()
        b_val = b_val - aph * grad_b_val
        b_val = ndarray.array(b_val, ctx)
        print(W_val.asnumpy(), b_val.asnumpy())
Exemplo n.º 2
0
def mnist_logreg(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False):
    # 训练逻辑回归模型
    print("Build logistic regression model...")

    W1 = ad.Variable(name="W1")
    b1 = ad.Variable(name="b1")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    z1 = ad.matmul_op(X, W1)
    y = z1 + ad.broadcastto_op(b1, z1)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_b1 = ad.gradients(loss, [W1, b1])
    executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    W1_val = np.zeros((784, 10))
    b1_val = np.zeros((10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    if ndarray.is_gpu_ctx(executor_ctx):
        W1_val = ndarray.array(W1_val, ctx=executor_ctx)
        b1_val = ndarray.array(b1_val, ctx=executor_ctx)
        X_val = ndarray.array(X_val, ctx=executor_ctx)
        y_val = ndarray.array(y_val, ctx=executor_ctx)

    lr = 1e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])
            loss_val, grad_W1_val, grad_b1_val, _ = executor.run(
                feed_dict = {X: X_val, y_: y_val, W1: W1_val, b1: b1_val})
            # SGD update
            if (executor_ctx is None):
                W1_val = W1_val - lr * grad_W1_val
                b1_val = b1_val - lr * grad_b1_val
            else:
                sgd_update_gpu(W1_val, grad_W1_val, lr)
                sgd_update_gpu(b1_val, grad_b1_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                        X: valid_X_val,
                        y_: valid_y_val,
                        W1: W1_val,
                        b1: b1_val},
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(
            np.argmax(valid_y_val, 1),
            np.argmax(valid_y_predicted, 1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.928200
    print("validation set accuracy=%f" % accuracy)
Exemplo n.º 3
0
def mnist_mlp(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False):
    # 训练一个三层感知机模型
    print("Build 3-layer MLP model...")

    W1 = ad.Variable(name="W1")
    W2 = ad.Variable(name="W2")
    W3 = ad.Variable(name="W3")
    b1 = ad.Variable(name="b1")
    b2 = ad.Variable(name="b2")
    b3 = ad.Variable(name="b3")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    # 下面是三层网络的激活函数,两个relu和一个softmax

    # relu(X W1+b1)
    z1 = ad.matmul_op(X, W1)
    z2 = z1 + ad.broadcastto_op(b1, z1)
    z3 = ad.relu_op(z2)

    # relu(z3 W2+b2)
    z4 = ad.matmul_op(z3, W2)
    z5 = z4 + ad.broadcastto_op(b2, z4)
    z6 = ad.relu_op(z5)

    # softmax(z5 W2+b2)
    z7 = ad.matmul_op(z6, W3)
    y = z7 + ad.broadcastto_op(b3, z7)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients(
        loss, [W1, W2, W3, b1, b2, b3])


    # 此处向前为符号定义


    # 只声明,不操作
    executor = ad.Executor(
        [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y],
        ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]


    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    # 随机初始化网络中的w和b
    rand = np.random.RandomState(seed=123)
    W1_val = rand.normal(scale=0.1, size=(784, 256))
    W2_val = rand.normal(scale=0.1, size=(256, 100))
    W3_val = rand.normal(scale=0.1, size=(100, 10))
    b1_val = rand.normal(scale=0.1, size=(256))
    b2_val = rand.normal(scale=0.1, size=(100))
    b3_val = rand.normal(scale=0.1, size=(10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)

    # todo 此处修改为cpu
    W1_val = ndarray.array(W1_val, ctx=executor_ctx_cpu)
    W2_val = ndarray.array(W2_val, ctx=executor_ctx_cpu)
    W3_val = ndarray.array(W3_val, ctx=executor_ctx_cpu)
    b1_val = ndarray.array(b1_val, ctx=executor_ctx_cpu)
    b2_val = ndarray.array(b2_val, ctx=executor_ctx_cpu)
    b3_val = ndarray.array(b3_val, ctx=executor_ctx_cpu)
    X_val = ndarray.array(X_val, ctx=executor_ctx_cpu)
    y_val = ndarray.array(y_val, ctx=executor_ctx_cpu)

    # 此处以上将数据分别转化为cpu和gpu两种格式



    lr = 1.0e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])


            # 计算单步的梯度
            loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \
                grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run(
                    feed_dict={
                        X: X_val,
                        y_: y_val,
                        W1: W1_val,
                        W2: W2_val,
                        W3: W3_val,
                        b1: b1_val,
                        b2: b2_val,
                        b3: b3_val})

            # todo 更新sgd_update_gpu_on_cpu
            def sgd_update_cpu(w1, w2, w3):
                w1_gpu = ndarray.empty(w1.shape, executor_ctx)
                w1.copyto(w1_gpu)
                w2_gpu = ndarray.empty(w2.shape, executor_ctx)
                w2.copyto(w2_gpu)
                sgd_update_gpu(w1_gpu, w2_gpu, w3)
                w1_gpu.copyto(w1)
                w2_gpu.copyto(w2)

            sgd_update_cpu(W1_val, grad_W1_val, lr)
            sgd_update_cpu(W2_val, grad_W2_val, lr)
            sgd_update_cpu(W3_val, grad_W3_val, lr)
            sgd_update_cpu(b1_val, grad_b1_val, lr)
            sgd_update_cpu(b2_val, grad_b2_val, lr)
            sgd_update_cpu(b3_val, grad_b3_val, lr)

            # sgd_update_gpu(W1_val, grad_W1_val, lr)
            # sgd_update_gpu(W2_val, grad_W2_val, lr)
            # sgd_update_gpu(W3_val, grad_W3_val, lr)
            # sgd_update_gpu(b1_val, grad_b1_val, lr)
            # sgd_update_gpu(b2_val, grad_b2_val, lr)
            # sgd_update_gpu(b3_val, grad_b3_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, _, _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                X: valid_X_val,
                y_: valid_y_val,
                W1: W1_val,
                W2: W2_val,
                W3: W3_val,
                b1: b1_val,
                b2: b2_val,
                b3: b3_val},
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(
            np.argmax(valid_y_val, 1),
            np.argmax(valid_y_predicted, 1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.970800
    print("validation set accuracy=%f" % accuracy)